1
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
2
|
Li J, Huang S, Shi L, Chen G, Liu X, Liu M, Guo G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun Inflamm Dis 2024; 12:e1129. [PMID: 38270295 PMCID: PMC10777888 DOI: 10.1002/iid3.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) are a group of RNAs that cannot synthesize proteins, but are critical in gene expression regulation. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), the two major family members, are intimately involved in controlling immune response, cell proliferation, apoptosis, differentiation and polarization, and cytokine secretion. Their interactions significantly influence lung inflammatory diseases and could be potential therapeutic targets. OBJECTIVES The review aims to elucidate the role of ncRNAs, especially the interactions between lncRNA and miRNA in lung diseases, including acute and chronic lung inflammatory diseases, as well as lung cancer. And provide novel insights into disease mechanisms and potential therapeutic methods. METHODS We conducted a comprehensive review of the latest studies on lncRNA and miRNA in lung inflammatory diseases. Our research involved searching through electronic databases like PubMed, Web of Science, and Scopus. RESULTS We explain the fundamental characteristics and functions of miRNA and lncRNA, their potential interaction mechanisms, and summarize the newly explorations on the role of lncRNA and miRNA interactions in lung inflammatory diseases. CONCLUSIONS Numerous lncRNAs and miRNAs have been found to partipicate in all stages of lung inflammatory diseases. While ncRNA-based therapies have been validated and developed, there remain challenges in developing more stable and effective drugs for clinical use.
Collapse
Affiliation(s)
- Jiaqi Li
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liangliang Shi
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guochang Chen
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
3
|
Fan M, Song W, Hao Z, Zhang J, Li Y, Fu J. Construction of lncRNA-miRNA-mRNA regulatory network in severe asthmatic bronchial epithelial cells: A bioinformatics study. Medicine (Baltimore) 2023; 102:e34749. [PMID: 37657025 PMCID: PMC10476739 DOI: 10.1097/md.0000000000034749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
Asthma is a chronic respiratory disease caused by environment-host interactions. Bronchial epithelial cells (BECs) are the first line of defense against environmental toxins. However, the mechanisms underlying the role of BECs in severe asthma (SA) are not yet fully understood. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to play important roles in the regulation of gene expression in the pathogenesis of SA. In this study, bioinformatics was used for the first time to reveal the lncRNA-miRNA-mRNA regulatory network of BECs in SA. Five mRNA datasets of bronchial brushing samples from patients with SA and healthy controls (HC) were downloaded from the Gene Expression Omnibus (GEO) database. A combination of the Venn diagram and robust rank aggregation (RRA) method was used to identify core differentially expressed genes (DEGs). Protein-protein interaction (PPI) analysis of core DEGs was performed to screen hub genes. The miRDB, miRWalk, and ENCORI databases were used to predict the miRNA-mRNA relationships, and the ENCORI and starBase v2.0 databases were used to predict the upstream lncRNAs of the miRNA-mRNA relationships. Four core DEGs were identified: carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), interleukin-1 receptor type 2 (IL1R2), trefoil factor 3 (TFF3), and vascular endothelial growth factor A (VEGFA). These 4 core DEGs indicated that SA was not significantly associated with sex. Enrichment analysis showed that the MAPK, Rap1, Ras, PI3K-Akt and Calcium signaling pathways may serve as the principal pathways of BECs in SA. A lncRNA-miRNA-mRNA regulatory network of the severe asthmatic bronchial epithelium was constructed. The top 10 competing endogenous RNAs (ceRNAs) were FGD5 antisense RNA 1 (FGD5-AS1), metastasis associated lung adenocarcinoma transcript 1 (MALAT1), X inactive specific transcript (XIST), HLA complex group 18 (HCG18), small nucleolar RNA host gene 16 (SNHG16), has-miR-20b-5p, has-miR-106a-5p, hsa-miR-106b-5p, has-miR-519d-3p and Fms related receptor tyrosine kinase 1 (FLT1). Our study revealed a potential mechanism for the lncRNA-miRNA-mRNA regulatory network in BECs in SA.
Collapse
Affiliation(s)
- Mengzhen Fan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Song
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
| | - Zheng Hao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory Innovation and Transformation, Tianjin, China
- Medical History Documentation Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Department of General Surgery, Henan University of Science and Technology Affiliated First Hospital, Luoyang, China
| | - Yang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinjie Fu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
5
|
Chen ST, Yang N. Constructing ferroptosis-related competing endogenous RNA networks and exploring potential biomarkers correlated with immune infiltration cells in asthma using combinative bioinformatics strategy. BMC Genomics 2023; 24:294. [PMID: 37259023 DOI: 10.1186/s12864-023-09400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Asthma is a common chronic respiratory disease worldwide. Recent studies have revealed the critical effects of the ceRNA network and ferroptosis on patients with asthma. Thus, this study aimed to explore the potential ferroptosis-related ceRNA network, investigate the immune cell infiltration level in asthma through integrated analysis of public asthma microarray datasets, and find suitable diagnostic biomarkers for asthma. METHODS First, three asthma-related datasets which were downloaded from the Gene Expression Omnibus (GEO) database were integrated into one pooled dataset after correcting for batch effects. Next, we screened differentially expressed lncRNAs (DElncRNAs) between patients and healthy subjects, constructed a ceRNA network using the StarBase database and screened ferroptosis-related genes from the predicted target mRNAs for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We also performed Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on the batch effect-corrected mRNA expression profile. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to screen potential diagnostic biomarkers, and the diagnostic efficacy was assessed using a receiver operating characteristic (ROC) curve. Finally, we determined the proportion of 22 immune cells in patients with asthma using CIBERSORT and investigated the correlation between key RNAs and immune cells. RESULTS We obtained 19 DElncRNAs, of which only LUCAT1 and MIR222HG had corresponding target miRNAs. The differentially expressed ferroptosis-related genes were involved in multiple programmed cell death-related pathways. We also found that the mRNA expression profile was primarily enriched in innate immune system responses. We screened seven candidate diagnostic biomarkers for asthma using LASSO regression (namely, BCL10, CD300E, IER2, MMP13, OAF, TBC1D3, and TMEM151A), among which the area under the curve (AUC) value for CD300E and IER2 were 0.722 and 0.856, respectively. Finally, we revealed the infiltration ratio of different immune cells in asthma and found a correlation between LUCAT1, MIR222HG, CD300E, and IER2 with some immune cells. CONCLUSION This study explored a potential lncRNA-miRNA-mRNA regulatory network and its underlying diagnostic biomarkers (CD300E and IER2) in asthma and identified the immune cells most associated with them, providing possible diagnostic markers and immunotherapeutic targets for asthma.
Collapse
Affiliation(s)
- Shao-Tian Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China
| | - Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
6
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
7
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
8
|
Yang Y, Sun Z, Ren T, Lei W. Differential Expression of lncRNA CASC2 in the Serum of Childhood Asthma and Its Role in Airway Smooth Muscle Cells Proliferation and Migration. J Asthma Allergy 2022; 15:197-207. [PMID: 35185342 PMCID: PMC8847142 DOI: 10.2147/jaa.s337236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yane Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Zhihong Sun
- Department of Pediatrics, The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Zhihong Sun, Department of Pediatrics, The Second Affiliated Hospital of Xi‘an Medical University, 167 Fang Dong Street, Xi’an, 710038, People’s Republic of China, Tel/Fax +86-2983553606, Email
| | - Tingting Ren
- Department of Pediatrics, The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Wei Lei
- Department of Pediatrics, Chang ‘an District Hospital, Xi‘an, Shaanxi, People’s Republic of China
| |
Collapse
|
9
|
Wang X, Xu L, Yu Y, Fu Y. LncRNA RP5-857K21.7 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the miR-508-3p/PI3K/AKT/mTOR axis. Autoimmunity 2021; 55:65-73. [PMID: 34913773 DOI: 10.1080/08916934.2021.1998895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuous increase in the prevalence of asthma poses a threat to human health. Despites numerous researches, the understanding of asthma development still remain elusive, hindering the development of effective treatment. Here, we explored the role of lncRNA RP5-857K21.7 (RP5-857K21.7) in the development of asthma and its potential molecular mechanism of regulation. Airway smooth muscle cells (ASMCs) were isolated and cultured after which some of the cells were induced with PDGF-BB to build an asthma cell model, and then, qRT-PCR analysis was used to measure the expression level of RP5-857K21.7 in the cell model. Result shows that the RP5-857K21.7 is significantly downregulated in PDGF-BB-induced ASMCs cells. Through CCK-8, transwell, and flow cytometry assay, we examined the functional impact of RP5-857K21.7 on the proliferation, migration, and apoptosis of the ASMCs, respectively, and found that the overexpression of RP5-857K21.7 markedly inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. Bioinformatics analysis predicted that the RP5-857K21.7 could sponge miR-508-3p and result was validated through a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR analysis. Mechanistically, RP5-857K21.7 regulates the PI3K/AKT/mTOR pathway by endogenously sponging miR-508-3p to inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. The current research suggests that the RP5-857K21.7 and its associated molecular pathway (miR-508-3p/PI3K/AKT/mTOR axis) might be a useful therapeutic target for the treatment of asthma disease.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lingfen Xu
- Department of General Medicine, Qinghai Province People's Hospital, Xining, China
| | - Yong Yu
- Urinary surgery, Qinghai Province People's Hospital, Xining, China
| | - Yimin Fu
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
10
|
Duan XJ, Zhang X, Ding N, Zhang JY, Chen YP. LncRNA NEAT1 regulates MMP-16 by targeting miR-200a/b to aggravate inflammation in asthma. Autoimmunity 2021; 54:439-449. [PMID: 34448644 DOI: 10.1080/08916934.2021.1966769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asthma is a common respiratory disease which is characterized by persistent airway inflammation. Abnormal expression of long non-coding RNAs (lncRNAs) is observed in asthma. However, whether lncRNA nuclear-enriched abundant transcript 1 (NEAT1) regulates asthmatic inflammation and its mechanism still needs to be further investigated. The expression levels of inflammatory factors (tumour necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, and IL-10) were detected using reverse transcription quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). MTT and flow cytometry assays were employed to determine cell proliferation and apoptosis, respectively. Dual luciferase reporter assay was performed to verify the relationship between miR-200a/b and MMP-16 or NEAT1. NEAT1 silencing markedly reduced TNF-α, IL-4, and IL-13 levels, while elevated IL-10 expression, suppressed cell proliferation, and promoted cell apoptosis. However, NEAT1 overexpression elicited the opposite effects on cell proliferation and inflammation cytokines secretion. What is more, NEAT1 negatively regulated miR-200a/b expression, and MMP16 was a target gene of miR-200a/b. miR-200a/b overexpression suppressed inflammation, cell proliferation, and enhanced cell apoptosis through regulation of MMP16. Moreover, MMP-16 overexpression or miR-200a/b inhibition abolished the regulatory effect of sh-NEAT1 on cell inflammation and apoptosis in BEAS-2B cells. NEAT1 acted as the role of sponge for miR-200a/b to regulate MMP-16 expression, thereby promoting asthma progression, suggesting that NEAT1 might have great potential as therapeutic target for asthma.
Collapse
Affiliation(s)
- Xiao-Jun Duan
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Xi Zhang
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Niu Ding
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Ji-Yan Zhang
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| | - Yan-Ping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, PR China
| |
Collapse
|