1
|
Mazhar MU, Naz S, Zulfiqar T, Khan JZ, Ghazanfar S, Tipu MK. Immunostimulant, hepatoprotective, and nephroprotective potential of Bacillus subtilis (NMCC-path-14) in comparison to dexamethasone in alleviating CFA-induced arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3275-3299. [PMID: 37930392 DOI: 10.1007/s00210-023-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Zhu ZD, Zhang M, Wang Z, Jiang CR, Huang CJ, Cheng HJ, Guan QY, Su TT, Wang MM, Gao Y, Wu HF, Wei W, Han YS, Wang QT. Chronic β-adrenergic stress contributes to cardiomyopathy in rodents with collagen-induced arthritis. Acta Pharmacol Sin 2023; 44:1989-2003. [PMID: 37268711 PMCID: PMC10545746 DOI: 10.1038/s41401-023-01099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023] Open
Abstract
Patients with rheumatoid arthritis (RA) have a much higher incidence of cardiac dysfunction, which contributes to the high mortality rate of RA despite anti-arthritic drug therapy. In this study, we investigated dynamic changes in cardiac function in classic animal models of RA and examined the potential effectors of RA-induced heart failure (HF). Collagen-induced arthritis (CIA) models were established in rats and mice. The cardiac function of CIA animals was dynamically monitored using echocardiography and haemodynamics. We showed that cardiac diastolic and systolic dysfunction occurred in CIA animals and persisted after joint inflammation and that serum proinflammatory cytokine (IL-1β, TNF-α) levels were decreased. We did not find evidence of atherosclerosis (AS) in arthritic animals even though cardiomyopathy was significant. We observed that an impaired cardiac β1AR-excitation contraction coupling signal was accompanied by sustained increases in blood epinephrine levels in CIA rats. Furthermore, serum epinephrine concentrations were positively correlated with the heart failure biomarker NT-proBNP in RA patients (r2 = +0.53, P < 0.0001). In CIA mice, treatment with the nonselective βAR blocker carvedilol (2.5 mg·kg-1·d-1, for 4 weeks) or the specific GRK2 inhibitor paroxetine (2.5 mg·kg-1·d-1, for 4 weeks) effectively rescued heart function. We conclude that chronic and persistent β-adrenergic stress in CIA animals is a significant contributor to cardiomyopathy, which may be a potential target for protecting RA patients against HF.
Collapse
Affiliation(s)
- Zhen-Duo Zhu
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhen Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chun-Ru Jiang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chong-Jian Huang
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hui-Juan Cheng
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qiu-Yun Guan
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Tian-Tian Su
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Hong-Fei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230038, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong-Sheng Han
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Qing-Tong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
3
|
Yuan H, Liu F, Long J, Duan G, Yang H. A review on circular RNAs and bacterial infections. Int J Biol Macromol 2023:125391. [PMID: 37321437 DOI: 10.1016/j.ijbiomac.2023.125391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Bacterial infections and related diseases have been a major burden on social public health and economic stability around the world. However, the effective diagnostic methods and therapeutic approaches to treat bacterial infections are still limited. As a group of non-coding RNA, circular RNAs (circRNAs) that were expressed specifically in host cells and played a key regulatory role have the potential to be of diagnostic and therapeutic value. In this review, we systematically summarize the role of circRNAs in common bacterial infections and their potential roles as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
6
|
Abdel-Aziz AM, Ibrahim YF, Ahmed RF, Mohamed ASM, Welson NN, Abdelzaher WY. Potential role of carvedilol in intestinal toxicity through NF-κB/iNOS/COX-2/TNF-α inflammatory signaling pathway in rats. Immunopharmacol Immunotoxicol 2022; 44:613-620. [PMID: 35506611 DOI: 10.1080/08923973.2022.2072327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The increased use of indomethacin (IND) is associated with gastrointestinal injury. This research aims to investigate the effects of a beta-blocker, carvedilol (CAR) on a rat model of IND-induced acute intestinal damage and clarify the probable underlying protective mechanisms. MATERIALS AND METHODS Twenty-four male Wistar rats were divided into four groups. Control group: given vehicles; CAR-treated group: given 10 mg/kg/day CAR PO daily by gastric gavage for 10 consecutive days; IND-treated group: given a single Sc dose of 10 mg/kg IND at the end of the ninth day of the experiment; combined CAR/IND-treated group: given both IND and CAR. RESULTS In the rats that received IND, severe intestinal histopathological changes together with oxidative and nitrosative intestinal stress were present biochemically and immunohistochemically. Obvious inflammatory and tissue damage were represented by the significant intestinal increases in TNF-α, COX-2, and caspase-3 together with the elevated expression of VCAM-1 adhesion molecules. Intestinal gene expression of NF-kB and COX-2 was also increased. Pretreatment with CAR significantly reversed the IND-induced intestinal toxic manifestations. CONCLUSION CAR has beneficial intestinal protective effects. Its ameliorative action is conferred through its antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha Fouad Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
7
|
Aboyoussef AM, Mohammad MK, Abo-Saif AA, Messiha BAS. Granisetron attenuates liver injury and inflammation in a rat model of cecal ligation and puncture-induced sepsis. J Pharmacol Sci 2021; 147:358-366. [PMID: 34663518 DOI: 10.1016/j.jphs.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Sepsis induced liver injury is recognized as a serious complication in intensive care units, it is deeply associated with oxidative stress, inflammation and subsequent pyroptosis. Hepatic pyroptosis known to aggravate sepsis-induced liver injury. Previous studies proved that granisetron has anti-inflammatory and antioxidant properties. Accordingly, this study aimed to evaluate the efficacy of granisetron on sepsis-induced liver damage using a cecal ligation and puncture (CLP) model in rats. MAIN METHODS Male albino rats were randomly divided into four groups: a sham control group, a granisetron control group, a CLP-induced sepsis group and a granisetron-treated CLP group. Markers of oxidative stress, inflammation, pyroptosis-related proteins and liver function were measured in addition to the histopathological study. KEY FINDINGS Granisetron pretreatment significantly decreased mortality and improved liver function, as indicated by decreased ALT, AST, and total bilirubin and increased albumin content. Moreover, granisetron increased GPx activity and downregulated hepatic MDA. Furthermore, granisetron administration significantly reduced TNF-α, IL-6, HMGB1 and NF-κB. It also decreased the expression of receptor for advanced glycation end and TLR4 in the liver tissue. Interestingly, granisetron inhibited pyroptosis as it reduced NLRP3, IL-1β and caspase-1. Granisetron was shown to increase Nrf2 and HO-1. In addition, granisetron treatment repaired, to some extent, the abnormal architecture of hepatic tissue. SIGNIFICANCE Our results suggested that granisetron is a potential therapeutic agent for sepsis-associated liver injury, possibly acting by inhibiting oxidative stress, inflammation and subsequent pyroptosis.
Collapse
Affiliation(s)
- Amira M Aboyoussef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mostafa Kamal Mohammad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Ali Ahmed Abo-Saif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Pharmacology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Basim A S Messiha
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Wang X, Zhang Z, Liang H, Chen R, Huang Y. Circ_0025908 regulates cell vitality and proliferation via miR-137/HIPK2 axis of rheumatic arthritis. J Orthop Surg Res 2021; 16:472. [PMID: 34330307 PMCID: PMC8323297 DOI: 10.1186/s13018-021-02615-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Rheumatic arthritis (RA) is an autoimmune disease with bad effects. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of RA, but the mechanism still indistinct. In this work, we explored the roles of circ_0025908 in RA. METHODS The levels of circ_0025908, microRNA-137 (miR-137), and mRNA of homeodomain-interacting protein kinase 2 (HIPK2) were detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) in RA tissues. Meanwhile, the level of HIPK2 was quantified by Western blot analysis. Besides, the cell functions were examined by CCK8 assay, EdU assay, flow cytometry assay, ELISA, and Western blot. Furthermore, the interplay between miR-137 and circ_0025908 or HIPK2 was detected by dual-luciferase reporter assay. RESULTS The levels of circ_0025908 and HIPK2 were upregulated, and the miR-137 level was decreased in RA tissues in contrast to that in normal tissues. For functional analysis, circ_0025908 deficiency inhibited cell vitality, cell mitotic cycle, cell proliferation, and immunoreaction in RA cells, whereas promoted cell apoptosis. Moreover, miR-137 was confirmed to repress the progression of RA cells by suppressing HIPK2. In mechanism, circ_0025908 acted as a miR-137 sponge to regulate the level of HIPK2. CONCLUSION Circ_0025908 facilitates the development of RA through increasing HIPK2 expression by regulating miR-137, which also offered an underlying targeted therapy for RA treatment.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Traumatic Orthopedics, Institute of Orthopedics, Huizhou Central People's Hospital, No. 41, North E'ling Road, Huizhou, 516000, Guangdong Province, China
| | - Zhiwen Zhang
- Department of Traumatic Orthopedics, Institute of Orthopedics, Huizhou Central People's Hospital, No. 41, North E'ling Road, Huizhou, 516000, Guangdong Province, China
| | - Haofeng Liang
- Department of Traumatic Orthopedics, Institute of Orthopedics, Huizhou Central People's Hospital, No. 41, North E'ling Road, Huizhou, 516000, Guangdong Province, China
| | - Ruixiong Chen
- Department of Traumatic Orthopedics, Institute of Orthopedics, Huizhou Central People's Hospital, No. 41, North E'ling Road, Huizhou, 516000, Guangdong Province, China
| | - Yuliang Huang
- Department of Traumatic Orthopedics, Institute of Orthopedics, Huizhou Central People's Hospital, No. 41, North E'ling Road, Huizhou, 516000, Guangdong Province, China.
| |
Collapse
|
9
|
El Morsy EM, Ahmed MA. Carvedilol attenuates l-arginine induced acute pancreatitis in rats through modulation of oxidative stress and inflammatory mediators. Chem Biol Interact 2020; 327:109181. [DOI: 10.1016/j.cbi.2020.109181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/29/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
|
10
|
Shah R, Pradhan R, Shah A. Utilization of Pre-Anesthetic Medications for Major Surgical Procedures at a Tertiary Care Center: A Descriptive Cross-sectional Study. ACTA ACUST UNITED AC 2020; 58:223-229. [PMID: 32417858 PMCID: PMC7580468 DOI: 10.31729/jnma.4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Drug utilization research is an important tool to analyze the use of drugs with special emphasis on medical, social, and economic consequences in society. This study aims to find out the utilization of pre-anesthetic medications in a major surgical procedure. Methods: A descriptive cross-sectional study was conducted from 15th April - 15th August 2019 in the postoperative ward at Birat Medical College and Teaching Hospital. The convenience sampling method was used after ethical clearance from the Institutional Review Committee (IRC) of Birat Medical College and Teaching Hospital, Biratnagar, Nepal. About 400 patients were studied. The collected data were entered into a statistical package for social science version 20 for further calculations at 95% Confidence Interval. Results: Out of 400 patients, 215 (53.8%) of patients were underwent into different major surgeries. All patients received midazolam 2 mg except children (1 mg) and Pethidine 25 mg along with 0.2 mg glycopyrrolate 352 (88%), ondansetron 276 (69%) and others 58 (14.5%) as a preanesthetic agent. For general anesthesia propofol, 30 mg have been utilized followed by fentanyl 306 (76.5%) and others (halothane, isoflurane, etc) 115 (28.8%). In case of prophylactic drug were ceftriaxone 500 mg, 100 mg metoclopramide 387 (96.8%), dexamethasone 251 (62.8%), tramadol 237 (59.3%), 15 mg ketorolac 368 (92%), ranitidine 163 (40.8%), and pantoprazole 237 (59.3%). Conclusions: The most commonly administered pre-anesthetic drugs were midazolam, pethidine, glycopyrrolate, and ondansetron. The incidence of postoperative nausea and vomiting the patient within 24 hours after surgery was significantly very low.
Collapse
Affiliation(s)
- Rekha Shah
- Department of Pharmacology,Birat Medical College, Biratnagar, Nepal
| | - Roshan Pradhan
- Department of Anesthesiology,Birat Medical College, Biratnagar, Nepal
| | - Arbindra Shah
- Department of Radiology, Nobel Medical College, Biratnagar, Nepal
| |
Collapse
|
11
|
Salem HF, Nafady MM, Kharshoum RM, Abd El-Ghafar OA, Farouk HO. Mitigation of Rheumatic Arthritis in a Rat Model via Transdermal Delivery of Dapoxetine HCl Amalgamated as a Nanoplatform: In vitro and in vivo Assessment. Int J Nanomedicine 2020; 15:1517-1535. [PMID: 32189966 PMCID: PMC7065716 DOI: 10.2147/ijn.s238709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Dapoxetine HCl (DH), a selective serotonin reuptake inhibitor, may be useful for the treatment of rheumatic arthritis (RA). The purpose of this study was to investigate the therapeutic efficacy of transdermal delivery of DH in transethosome nanovesicles (TENVs). This novel delivery of DH may overcome the drawbacks associated with orally administered DH and improve patient compliance. Methods DH-TENV formulations were prepared using an injection- sonication method and optimized using a 33 Box-Behnken-design with Design Expert® software. The TENV formulations were assessed for entrapment efficiency (EE-%), vesicle size, zeta potential, in vitro DH release, and skin permeation. The tolerability of the optimized DH-TENV gel was investigated using a rat skin irritation test. A pharmacokinetic analysis of the optimized DH-TENV gel was also conducted in rats. Moreover, the anti-RA activity of the optimized DH-TENV gel was assessed based on the RA-specific marker anti-cyclic cirtullinated peptide antibody (anti-CCP), the cartilage destruction marker cartilage oligomeric matrix protein (COMP) and the inflammatory marker interleukin-6 (IL-6). Level of tissue receptor activator of nuclear factor kappa-Β ligand (RANKL) were also assessed. Results The optimized DH-TENV formulation involved spherical nanovesicles that had an appropriate EE- % and skin permeation characteristic. The DH-TENV gel was well tolerated by rats. The pharmacokinetics analysis showed that the optimized DH-TENV gel boosted the bioavailability of the DH by 2.42- and 4.16-fold compared to the oral DH solution and the control DH gel, respectively. Moreover, it significantly reduced the serum anti-CCP, COMP and IL-6 levels and decreased the RANKL levels. Furthermore, the DH-TENV gel attenuated histopathological changes by almost normalizing the articular surface and synovial fluid. Conclusion The results indicate that DH-TENVs can improve transdermal delivery of DH and thereby alleviate RA.
Collapse
Affiliation(s)
- Heba Farouk Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | - Mohamed Mahmoud Nafady
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Rasha Mostafa Kharshoum
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni- Suef University, Beni Suef, Egypt
| | | | - Hanan Osman Farouk
- Pharmaceutics and Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| |
Collapse
|
12
|
El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund's adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 2020; 26:1140-1154. [PMID: 31736366 PMCID: PMC6882467 DOI: 10.1080/10717544.2019.1686087] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The current study aimed to encapsulate fluvastatin sodium (FVS), a member of the statins family possessing pleiotropic effects in rheumatoid arthritis (RA), into spanlastic nanovesicles (SNVs) for transdermal delivery. This novel delivery could surmount FVS associated oral encumbrances such as apparent first-pass effect, poor bioavailability and short elimination half-life, hence, accomplishing platform for management of RA. To consummate this objective, FVS-loaded SNVs were elaborated by thin film hydration method, utilizing either Span 60 or Span 80, together with Tween 80 or Brij 35 as an edge activator according to full factorial design (24). Applying Design-Expert® software, the influence of formulation variables on SNVs physicochemical properties and the optimized formulation selection were explored. Additionally, the pharmacokinetic studies were scrutinized in rats. Furthermore, in Freund's adjuvant-induced arthritis, rheumatoid markers, TNF-α, IL-10, p38 MAPK, and antioxidant parameters were measured. The optimum SNVs were nano-scaled spherical vesicles (201.54 ± 9.16 nm), having reasonable entrapment efficiency (71.28 ± 2.05%), appropriate release over 8 h (89.45 ± 3.64%) and adequate permeation characteristics across the skin (402.55 ± 27.48 µg/cm2). The pharmacokinetic study disclosed ameliorated bioavailability of the optimum SNVs gel by 2.79- and 4.59-fold as compared to the oral solution as well as the traditional gel, respectively. Moreover, it elicited a significant suppression of p38 MAPK expression and also significant improvement of all other measured biomarkers. Concisely, the foregoing findings proposed that SNVs can be auspicious for augmenting FVS transdermal delivery for management of RA.
Collapse
Affiliation(s)
- Shahira F El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Nafady
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Doaa S Hamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Hu XM, Ren S, Li K, Li XT. Tacrine modulates Kv2.1 channel gene expression and cell proliferation. Int J Neurosci 2020; 130:781-787. [PMID: 31847645 DOI: 10.1080/00207454.2019.1705811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose/Aim: Besides as a cholinesterase (ChE) inhibitor, tacrine is able to act on multiple targets such as nicotinic receptors (nAChRs) and voltage-gated K+ (Kv) channels. Kv2.1, a Kv channel subunit underlying delayed rectifier currents with slow kinetics of inactivation, is highly expressed in the mammalian brain, especially in the hippocampus. Nevertheless, limited data are available concerning the relationship between tacrine and Kv2.1 channels. In the present study, we explore the possible effects of tacrine on Kv2.1 channels in heterologous expression systems and N2A cells.Materials and methods: The change of expression and currents of Kv2.1 after treatment with tacrine was detected by PCR and whole-cell recordings, respectively. WST-8 experiments were performed to reveal the effects of tacrine on cell proliferation.Results: Incubation with tacrine induced a significant reduction of the mRNA level of Kv2.1 channels in HEK293 cells. The decline of corresponding currents carried by Kv2.1 was also observed. Moreover, the proliferation rates of HEK293 cells with Kv2.1 channel were substantially enhanced after treatment with this chemical for 24 h. Similar results were also detected after exposure to tacrine in N2A cells with native expression of Kv2.1 channels.Conclusion: These lines of evidence indicate that application of tacrine downregulates the expression of Kv2.1 channels and increase cell proliferation. The effect of tacrine on Kv2.1 channels may provide an alternative explanation for its neuroprotective action.
Collapse
Affiliation(s)
- Xi-Mu Hu
- Graduate Institute of South-Central University for Nationalities, Wuhan, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Kai Li
- Graduate Institute of South-Central University for Nationalities, Wuhan, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
Aniss NND, Zaazaa AM, Saleh MRA. Anti-arthritic Effects of Platelets Rich Plasma and Hyaluronic Acid on Adjuvant-induced Arthritis in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2020.33.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
El-Ashmawy NE, Khedr EG, Shamloula MM, Kamel MM. Evaluation of the antirheumatic effects of isoflavone-free soy protein isolate and etanercept in rats with adjuvant-induced arthritis. Exp Biol Med (Maywood) 2019; 244:545-553. [PMID: 30897958 PMCID: PMC6545695 DOI: 10.1177/1535370219839222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/03/2019] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT In view of the partial clinical benefit and significant toxicity of traditional rheumatoid arthritis (RA) treatments, there is a growing trend to use complementary therapy. The antiarthritic activity of soy is related to the effect of soy isoflavones. However, little is known about the antiarthritic activity of soy protein itself. This study demonstrates that soy protein isolate (SPI) and etanercept (ETN), a tumor necrosis factor-α (TNF-α) inhibitor, protect rats against the effects of adjuvant-induced arthritis (AIA) by reducing inflammation (TNF-α and matrix metalloproteinase-3), autoantibody production (anticyclic citrullinated peptide), and lipid peroxidation (malondialdehyde). Only SPI improved dyslipidemia accompanied by RA, giving it the advantage of reducing cardiovascular risk. Additionally, the severity of arthritis-induced pathology, including inflammatory infiltrates, synovial hyperplasia, pannus formation, synovial vascularity, and cartilage erosions, was reduced by both SPI and ETN. This research ascertains the possible antiarthritic effect of SPI, making it a recommended alternative therapy for RA.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha M Shamloula
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Maha M Kamel
- Department of Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| |
Collapse
|
16
|
Gong S, Yan Z, Liu Z, Niu M, Fang H, Li N, Huang C, Li L, Chen G, Luo H, Chen X, Zhou H, Hu J, Yang W, Huang Q, Schnabl B, Chang P, Billiar TR, Jiang Y, Chen P. Intestinal Microbiota Mediates the Susceptibility to Polymicrobial Sepsis-Induced Liver Injury by Granisetron Generation in Mice. Hepatology 2019; 69:1751-1767. [PMID: 30506577 DOI: 10.1002/hep.30361] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022]
Abstract
Sepsis-induced liver injury is recognized as a key problem in intensive care units. The gut microbiota has been touted as an important mediator of liver disease development; however, the precise roles of gut microbiota in regulating sepsis-induced liver injury are unknown. Here, we aimed to investigate the role of the gut microbiota in sepsis-induced liver injury and the underlying mechanism. Cecal ligation and puncture (CLP) was used to induce polymicrobial sepsis and related liver injury. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. Metabolomics analysis was performed to characterize the metabolic profile differences between sepsis-resistant (Res; survived to 7 days after CLP) and sepsis-sensitive (Sen; moribund before or approximately 24 hours after CLP) mice. Mice gavaged with feces from Sen mice displayed more-severe liver damage than did mice gavaged with feces from Res mice. The gut microbial metabolic profile between Sen and Res mice was different. In particular, the microbiota from Res mice generated more granisetron, a 5-hydroxytryptamine 3 (5-HT3 ) receptor antagonist, than the microbiota from Sen mice. Granisetron protected mice against CLP-induced death and liver injury. Moreover, proinflammatory cytokine expression by macrophages after lipopolysaccharide (LPS) challenge was markedly reduced in the presence of granisetron. Both treatment with granisetron and genetic knockdown of the 5-HT3A receptor in cells suppressed nuclear factor kappa B (NF-кB) transactivation and phosphorylated p38 (p-p38) accumulation in macrophages. Gut microbial granisetron levels showed a significantly negative correlation with plasma alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels in septic patients. Conclusion: Our study indicated that gut microbiota plays a key role in the sensitization of sepsis-induced liver injury and associates granisetron as a hepatoprotective compound during sepsis development.
Collapse
Affiliation(s)
- Shenhai Gong
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Zhengzheng Yan
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Zhanguo Liu
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Heng Fang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Chenyang Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Guiming Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Xiaojiao Chen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjuan Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Wei Yang
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ping Chang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Mateen S, Rehman MT, Shahzad S, Naeem SS, Faizy AF, Khan AQ, Khan MS, Husain FM, Moin S. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur J Pharmacol 2019; 852:14-24. [PMID: 30796902 DOI: 10.1016/j.ejphar.2019.02.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder affecting joints and frequently characterized by initial local and later systemic inflammation. The present study was conducted with the aim to determine the anti-inflammatory and antioxidant effects of cinnamaldehyde and eugenol in the peripheral blood mononuclear cells (PBMC) of RA patients. PBMCs obtained from RA patients were treated with varying concentrations of cinnamaldehyde and eugenol. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were monitored in the 24-h culture supernatant of PBMCs. Reactive oxygen species formation, biomolecular oxidation and the activities of antioxidant enzymes were also determined. FTIR analysis was done to determine structural alterations in the PBMCs. Molecular docking was performed to gain an insight into the binding mechanism of eugenol and cinnamaldehyde with pro-inflammatory cytokines. The levels of pro-inflammatory cytokines and markers of oxidative stress were found to be elevated in the PBMC culture of RA patients as compared to the healthy controls. Cinnamaldehyde and eugenol have significantly reduced the levels of cytokines. Reactive oxygen species formation, biomolecular oxidation and antioxidant defense response were also ameliorated by treating PBMCs with both the compounds. FTIR results further confirms cinnamaldehyde and eugenol mediated protection to biomolecules of PBMCs of RA patients. Molecular docking results indicates interaction of cinnamaldehyde and eugenol with key residues of TNF-α and IL-6. Cinnamaldehyde and eugenol were found to exert potent anti-inflammatory and anti-oxidant effects on the PBMC culture of RA patients. So, these compounds may be used as an adjunct in the management of RA.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sumayya Shahzad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abul Faiz Faizy
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Qayyum Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
18
|
Bucsek MJ, Giridharan T, MacDonald CR, Hylander BL, Repasky EA. An overview of the role of sympathetic regulation of immune responses in infectious disease and autoimmunity. Int J Hyperthermia 2019; 34:135-143. [PMID: 29498310 DOI: 10.1080/02656736.2017.1411621] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress in patients and pre-clinical research animals plays a critical role in disease progression Activation of the sympathetic nervous system (SNS) by stress results in secretion of the catecholamines epinephrine (Epi) and norepinephrine (NE) from the adrenal gland and sympathetic nerve endings. Adrenergic receptors for catecholamines are present on immune cells and their activity is affected by stress and the accompanying changes in levels of these neurotransmitters. In this short review, we discuss how this adrenergic stress impacts two categories of immune responses, infections and autoimmune diseases. Catecholamines signal primarily through the β2-adrenergic receptors present on innate and adaptive immune cells which are critical in responding to infections caused by pathogens. In general, this adrenergic input, particularly chronic stimulation, suppresses lymphocytes and allows infections to progress. On the other hand, insufficient adrenergic control of immune responses allows progression of several autoimmune diseases.
Collapse
Affiliation(s)
- Mark J Bucsek
- a Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | | | - Cameron R MacDonald
- a Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Bonnie L Hylander
- a Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Elizabeth A Repasky
- a Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| |
Collapse
|
19
|
Wang J, Gong S, Wang F, Niu M, Wei G, He Z, Gu T, Jiang Y, Liu A, Chen P. Granisetron protects polymicrobial sepsis-induced acute lung injury in mice. Biochem Biophys Res Commun 2019; 508:1004-1010. [DOI: 10.1016/j.bbrc.2018.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
|
20
|
Shafiey SI, Mohamed WR, Abo-Saif AA. Paroxetine and rivastigmine mitigates adjuvant-induced rheumatoid arthritis in rats: Impact on oxidative stress, apoptosis and RANKL/OPG signals. Life Sci 2018; 212:109-118. [DOI: 10.1016/j.lfs.2018.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
|
21
|
Gaafar AGA, Messiha BAS, Abdelkafy AML. Nicorandil and theophylline can protect experimental rats against complete Freund's adjuvant-induced rheumatoid arthritis through modulation of JAK/STAT/RANKL signaling pathway. Eur J Pharmacol 2018; 822:177-185. [PMID: 29337196 DOI: 10.1016/j.ejphar.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
Abstract
Signaling pathways are interesting fields of study of pathogenesis and treatment trials. We elucidated the possible protective effects of nicorandil (15mg/kg/day) and theophylline (20mg/kg/day) on experimentally-induced RA, focusing on the role of JAK (Janus Kinase) / STAT (Signal Transducer and Activator of Transcription) / RANKL (Receptor Activator of Nuclear factor-Kappa B Ligand) / cytokine signaling pathway. Four sets of experiments were performed. First, effect of test agents on normal animals was evaluated. Second, effect of test agents was evaluated on Complete Freund's Adjuvant (CFA; 0.3ml, s.c.)-induced RA to investigate anti-arthritic effect. Third, effect of test agents was evaluated on growth hormone (GH; 2mg/kg/day, s.c.)-induced stimulation of JAK/STAT/RANKL/cytokine signaling pathway to investigate the role of this signaling pathway in their anti-arthritic effect. Fourth, the effect of test agents was performed on CFA/GH-induced RA. To fulfill this purpose, serum anti-citrullinated peptide antibody (ACPA), interleukin-6 (IL-6), and cartilage oligomeric matrix protein (COMP), together with tissue JAK2, STAT3, RANKL, inducible and endothelial nitric oxide synthases (iNOS and eNOS) as well as macrophage inflammatory protein (MIP1α) were estimated using ELISA, Western blotting and PCR techniques, confirmed by a histopathological study. Test agents significantly corrected JAK2, STAT3, RANKL and IL-6 values in animals receiving GH. Additionally, test agents could correct ACPA, IL-6, COMP, JAK2, STAT3, RANKL, iNOS, eNOS and MIP1α levels compared with the respective CFA or CFA/GH controls. These results conclude that nicorandil and theophylline have good anti-arthritic effects related to modulation of JAK/STAT/RANKL signaling pathway. Further clinical trials are claimed.
Collapse
|