Potent in vitro antitumor activity of B-subunit of Shiga toxin conjugated to the diphtheria toxin against breast cancer.
Eur J Pharmacol 2021;
899:174057. [PMID:
33753109 DOI:
10.1016/j.ejphar.2021.174057]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Immunotoxins are protein-based drugs consist of a target-specific binding domain and a cytotoxic domain to eliminate target cells. Such compounds are potentially therapeutic to combat diseases such as cancer. Generally, the B-subunit of Shiga toxin (STXB) receptor, globotriaosylceramide (Gb3), is expressed in high amounts on a number of human tumors cancer cells. In this study, we evaluated a new antitumor candidate called DT389-STXB chimeric protein, which genetically fused the DT to B-subunit of Shiga-like toxin (STXB). First a chimeric protein, encoding DT389-STXB was synthesized. The optimized chimeric protein expressed in E.coli BL21 (DE3) and confirmed by anti-His Western blot analysis. T47D, SKBR3, 4T1 and MCF7 cell lines were treated separately with purified DT389-STXB recombinant protein and functional activity of DT389-STXB was analyzed by the cell enzyme-linked immunosorbentassay (ELISA), MTT, ICC, Western blot and apoptosis tests. The results indicated that the recombinant DT389-STXB fusion protein with a molecular weight of 53 kDa was successfully expressed in E.coli BL21 (DE3) and the anti-His western-blot was used to confirm the presence of the protein. The DT389-STXB fusion protein attached to T47D, SKBR3 and 4T1 cell lines with the proper affinity and induced dose-dependent cytotoxicity against GB3-expressing cancer cells in vitro. Our results showed that DT389-STXB fusion protein may be a promising candidate for antitumor therapy agent against breast cancer; however, further studies are required to explore its efficacy in vivo for therapeutic applications.
Collapse