1
|
Xu Y, Shen B, Pan X, Liu C, Wang Y, Chen X, Wang T, Chen G, Chen J. Palmatine ameliorated lipopolysaccharide-induced sepsis-associated encephalopathy mice by regulating the microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155307. [PMID: 38181529 DOI: 10.1016/j.phymed.2023.155307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE), a common neurological complication from sepsis, is widespread among patients in intensive care unit and is linked to substantial morbidity and mortality rates, thus posing a substantial menace to human health. Due to the intricate nature of SAE's pathogenesis, there remains a dearth of efficacious therapeutic protocols, encompassing pharmaceutical agents and treatment modalities, up until the present time. Palmatine exhibits distinctive benefits in the regulation of inflammation for the improvement of sepsis. Nevertheless, the precise functions of palmatine in treating SAE and its underlying mechanism have yet to be elucidated. PURPOSE This study aimed to evaluate efficiency of palmatine in SAE mice and its underlying mechanisms. STUDY DESIGN AND METHODS Behavioral experiments, percent survival rate analysis, histological analysis, immunofluorescence staining, ELISA analysis, were performed to evaluate the efficiency of palmatine in SAE mice. Quantibody® mouse inflammation array glass chip was performed to observe the effects of palmatine on inflammation storm in SAE mice. Real-time quantitative and western blotting analyzes were employed to examine the expression of relevant targets in the Notch1/nuclear factor-kappa B (NF-κB) pathway. Finally, brain tissues metabolomics-based analyzes were performed to detect the differentially expressed metabolites and metabolic pathways. The fecal samples were subjected to microbial 16S rRNA analysis and untargeted metabolomics analysis in order to identify the specific flora and metabolites associated with SAE, thereby further investigating the mechanism of palmatine in SAE mice. RESULTS Our results showed that palmatine significantly improved nerve function, reduced cell apoptosis in brain tissue, and decreased inflammatory cytokine levels in SAE induced-LPS mice. Meanwhile, our results demonstrate the potential of palmatine in modulating key components of the Notch1/NF-κB pathway, enhancing the expression of tight junction proteins, improving intestinal permeability, promoting the growth of beneficial bacteria (such as Lachnospiraceae_NK4A136_group), inhibiting the proliferation of harmful bacteria (such as Escherichia-Shigella), and mitigating metabolic disorders. Ultimately, these observed effects contribute to the therapeutic efficacy of palmatine in treating SAE. CONCLUSION The findings of our study have provided confirmation regarding the efficacy of palmatine in the treatment of SAE, thereby establishing a solid foundation for further exploration into SAE therapy and the advancement and investigation of palmatine.
Collapse
Affiliation(s)
- Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, PR China
| | - Bixin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xusheng Pan
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, PR China
| | - Chang Liu
- College of pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Yingyue Wang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Xiaowei Chen
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Ting Wang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, PR China; School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Guirong Chen
- College of pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China.
| | - Jing Chen
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, 317000, PR China.
| |
Collapse
|
2
|
Meng J, Wang J, Zhu J, Li S, Qiu T, Wang W, Ding J, Wang W, Liu J. Bacteriostatic Effects of Yujin Powder and Its Components on Clinical Isolation of Multidrug-Resistant Avian Pathogenic Escherichia coli. Vet Sci 2023; 10:vetsci10050328. [PMID: 37235411 DOI: 10.3390/vetsci10050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Escherichia coli is one of the most common pathogenic bacteria in diarrheal chickens, leading to serious economic losses in the poultry industry. The limited effect of antibiotics on antibiotic-resistant E. coli makes this bacterium a potential threat to human health. Yujin powder (YJP) has been reported as an agent that releases the symptoms caused by E. coli for a long time. The objective of this study is to investigate the effect of Yujin powder (YJP) and its components, Scutellariae Radix (SR) and Baicalin (Bac), anti-against multi-drug-resistant E. coli in vitro and in vivo. A multi-drug-resistant bacteria was isolated and identified from a clinical diarrheal chick. Then, the anti-bacterial effects of drugs were assessed in vitro and in vivo by analyzing the bacteria loads of organs, the levels of endotoxin, TNF-α, IL-1β, and IL-6 of the serum. Results found that the pathogenic E. coli was resistant to 19 tested antibiotics. YJP, SR, and Bac could directly inhibit the growth of this strain at high concentrations in vitro, and presents obvious anti-bacterial effects by reducing the bacterial loads, the release of endotoxin, and inflammation in vivo, which was much more effective than the resistant antibiotic ciprofloxacin. This study demonstrates that those natural medicines have the potential to be used as novel treatments to treat the disease caused by this isolated MDREC strain.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Chen G, Liu C, Zhang M, Wang X, Xu Y. Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. Int J Immunopathol Pharmacol 2022; 36:3946320221133017. [PMID: 36314579 PMCID: PMC9629566 DOI: 10.1177/03946320221133017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Niloticin is an active compound isolated from Cortex phellodendri with uncharacterized anti-inflammatory activity. We assessed the drug potential of niloticin and examined its ability to target myeloid differentiation protein 2 (MD-2) to ascertain the mechanism for its anti-inflammatory activity. METHODS The Traditional Chinese Medicine Systems Pharmacology Database was used to evaluate niloticin. Bio-layer interferometry and molecular docking technologies were used to explore how niloticin targets MD-2, which mediates a series of toll-like receptor 4 (TLR4)-dependent inflammatory responses. The cytokines involved in the lipopolysaccharide (LPS)-TLR4/MD-2-NF-κB pathway were evaluated using ELISA, RT-qPCR, and western blotting. RESULTS Niloticin could bind to MD-2 and had no evident effects on cell viability. Niloticin treatment significantly decreased the levels of NO, IL-6, TNF-α, and IL-1β induced by LPS (p < 0.01). IL-1β, IL-6, iNOS, TNF-α, and COX-2 mRNA expression levels were decreased by niloticin (all p < 0.01). Compared with that in the control group, the increase in TLR4, p65, MyD88, p-p65, and iNOS expression levels induced by LPS were suppressed by niloticin (all p < 0.01). CONCLUSION Our results suggest that niloticin has therapeutic potential and binds to MD-2. Niloticin binding to MD-2 antagonized the effects of LPS binding to the TLR4/MD-2 complex, resulting in the inhibition of the LPS-TLR4/MD-2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Guirong Chen
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chang Liu
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mingbo Zhang
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiaobo Wang
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Xiaobo Wang, Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China.
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China,Yubin Xu, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
4
|
Cheng D, Liu P, Wang Z. Palmatine attenuates the doxorubicin-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis. Int Immunopharmacol 2022; 106:108583. [PMID: 35151220 DOI: 10.1016/j.intimp.2022.108583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND As a natural isoquinoline alkaloid, palmatine (PLT) has been proven to play a protective role against a variety of cardiovascular diseases. However, little research on the effects of PLT on doxorubicin (DOX)-induced cardiotoxicity has been carried out. Thus, we investigated the potential functions of PLT in DOX-induced cardiotoxicity. In the present study, a single intraperitoneal injection of DOX (15 mg/kg) in mice was used to establish an acute cardiotoxicity model. Our study shows that PLT administration could reduce myocardial injury and improve cardiac dysfunction in DOX-treated mice. Further experiments showed that PLT administration suppressed the DOX-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis in mice. Moreover, we found that the protective effect of PLT treatment was counteracted by sirtuin1 (Sirt1) knockdown. In summary, our study shows that PLT treatment can exert a protective effect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Dongliang Cheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, Hubei Province 430000, China
| | - Ping Liu
- Department of Pathology, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, Hubei Province 430000, China.
| |
Collapse
|
5
|
Huanglianjiedu Decoction as an effective treatment for oral squamous cell carcinoma based on network pharmacology and experimental validation. Cancer Cell Int 2021; 21:553. [PMID: 34674717 PMCID: PMC8529748 DOI: 10.1186/s12935-021-02201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of malignant tumors in oral and maxillofacial region with high fatality. Huanglianjiedu Decoction (HLJDD) is a well-known traditional Chinese medicinal prescription, which consists of Coptis chinensis Franch, Scutellaria baicalensis Georgi, Phellodendron amurense Rupr and Gardenia jasminoides J.Ellis. Some clinical studies showed HLJDD had good effectiveness on OSCC, but the mechanism is unclear. Methods In this study, potential components of HLJDD and putative targets were screened by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Combining with potential targets of OSCC searched from Therapeutic Target Database (TTD) and Online Mendelian Inheritance in Man (OMIM), we drew protein–protein interaction (PPI) network by Cytoscape v3.2.0 software. After topological analysis we got core targets and further did Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then we did the in vitro experiments to verify the major biological processes (cell cycle, apoptosis and proliferation) and signaling pathways (mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), protein kinase B (AKT)) on OSCC cell lines, SCC-25 and CAL-27. Results The potential component targets number of Coptis chinensis Franch, Scutellaria baicalensis Georgi, Phellodendron amurense Rupr and Gardenia jasminoides J.Ellis were 39, 93, 81and 88, respectively. Then we got 52 core targets which enriched in cell cycle, apoptosis, proliferation, MAPK activation etc. and obtained TOP30 pathways. On SCC-25 and CAL-27, HLJDD suppressed cell proliferation, induced late apoptosis and inhibited cell invasion and migration which were consistent with the results from network pharmacology analysis. Additionally, in cell cycle, we confirmed HLJDD inhibited G1 phase and arrested in S phase to reduce cell proliferation on SCC-25. In signaling pathways, HLJDD inhibited the phosphorylation of extracellular regulatory protein kinase 1/2 (ERK1/2) and NF-κB p65 (S468) on SCC-25 and CAL-27. Conclusions HLJDD played a potential therapeutic role on OSCC via inhibiting p-ERK1/2 and p-NF-κB p65 (S468). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02201-6.
Collapse
|
6
|
Zhang ZT, Huang GX, He WJ, Gu WT, Wang X, Chen ZQ, Bi FJ, Zhang LY, Wang SM, Tang D. Rapid screening of neuroprotective components from Huang-Lian-Jie-Du Decoction by living cell biospecific extraction coupled with HPLC-Q-Orbitrap-HRMS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122764. [PMID: 34052562 DOI: 10.1016/j.jchromb.2021.122764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Huang-Lian-Jie-Du Decoction (HLJDD), a well-known traditional Chinese formulation, has been proved to exert neuroprotective effects, however, the bioactive components in HLJDD still remain to be elucidated. In the present study, a rapid and effective method involving live cell biospecific extraction and HPLC-Q-Orbitrap HRMS/MS was utilized to rapidly screen and identify the neuroprotective compounds from the HLJDD crude extract directly. Firstly, sixteen principal components in HLJDD crude extract were identified by HPLC-Q-Orbitrap HRMS/MS analysis. After co-incubation with PC12 cells, which have been validated as the key target cells for neurodegenerative diseases, seven compounds of them were demonstrated to exhibit binding affinity to the target cells. Furthermore, three representative compounds named baicalin, wogonoside, and berberine were subsequently verified to exert cytoprotective effects on PC12 cells injured by hydrogen peroxide via inhibiting oxidative stress and cell apoptosis, indicating that these screened compounds may possess a potential for the treatment of neurodegenerative diseases and were responsible, in part at least, for the neuroprotective beneficial effects of HLJDD. Taken together, our study provides evidence that live cell biospecific extraction coupled with LC-HRMS/MS technique is an efficient method for rapid screening potential bioactive components in traditional Chinese medicines.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang-Xiao Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jiao He
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Fu-Jun Bi
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine) of Guangzhou Institute For Drug Control, Guangzhou 510160, China
| | - Lu-Yong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Xu YB. The Research on Huanglian Jiedu Decoction against Atopic Dermatitis. SCIENTIFIC PROGRAMMING 2021; 2021:1-6. [DOI: 10.1155/2021/5557908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Objective. Study on the pharmacodynamic basis and mechanism of Huanglian Jiedu Decoction against atopic dermatitis (AD). Methods. Based on network pharmacology, the targets of Huanglian Jiedu Decoction and AD were screened by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SwissTargetPrediction databases, and the database of Online Mendelian Inheritance in Man (OMIM), Therapeutic Targets Database (TTD) and the Comparative Toxicogenomics Database (CTD); then, “chemical composition-target-related pathway-disease target” network graph of Huanglian Jiedu Decoction against AD was constructed by using STRING and Cytoscape software. In combination with in vitro experiments, the levels of IL-4, IL-6, and IL-10 in T cells were determined by ELISA; the pharmacodynamic basis and mechanism of Huanglian Jiedu Decoction against AD were preliminarily explored. Results. 81 active ingredients in Huanglian Jiedu Decoction were screened by network pharmacology, 31 of which were related to atopic dermatitis, corresponding to 12 target proteins. A total of 14 pathways were obtained by KEGG pathway analysis, and 8 were associated with atopic dermatitis. Compared with the control group, 20 and 40 µg/ml of Huanglian Jiedu Decoction could significantly reduce the contents of IL-4, IL-6, and IL-10 in T lymphocytes of mice with atopic dermatitis (
). Conclusion. Huanglian Jiedu Decoction can act against AD by multicomponent, multitarget, and multichannel mode of action.
Collapse
Affiliation(s)
- Yu-Bin Xu
- Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, China
| |
Collapse
|
8
|
Jiang M, Li Z, Zhu G. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors. Pharmacol Res 2020; 158:104890. [PMID: 32389860 DOI: 10.1016/j.phrs.2020.104890] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
As an essential component of the innate immune system, Toll-like receptors (TLRs) are a family of well-recognized ligand-binding receptors found in various organisms and initiate host immune responses. Activation of TLRs signaling pathways lead to the induction of numerous genes that function in host defense. Baicalin is a natural compound from the dry raw root of Scutellaria baicalensis (S. baicalensis) and it has been found to exhibit several pharmaceutical actions, such as anti-inflammation, anti-tumor and antivirus. These biological activities are mainly related to the regulatory effect of baicalin on the host immune response. In this review, we provide an overview of the regulation of baicalin on TLRs signaling pathways in various pathological conditions, and highlight potential targets for the development of the regulatory effect of natural compound from traditional Chinese medicine on innate immune system.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|