1
|
Joseph K, Petrović B, Ibrahim SAS, Thiha A, Milić L, Ahmad MY, Pavlović N, Kojić S, Ibrahim F, Stojanović GM. Microfluidic and impedance analysis of rosemary essential oil: implications for dental health. Biomed Eng Online 2024; 23:111. [PMID: 39497132 PMCID: PMC11533331 DOI: 10.1186/s12938-024-01301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Oral health is closely linked to systemic conditions, particularly non-communicable diseases (NCDs), which can exacerbate oral issues. Essential oils (EOs) have emerged as potential alternatives for oral health due to their antibacterial, anti-inflammatory, and antioxidant properties. Among these, rosemary essential oil (REO) shows promise due to its various biological activities. This study investigates the potential of REO in dental applications using microfluidic devices and electrochemical impedance spectroscopy (EIS) to analyze the electrical properties of REO in artificial saliva (AS) mixtures. RESULTS The study demonstrated significant variations in impedance across different REO concentrations and their mixtures with AS. Higher impedance was observed in REO mixtures, particularly at lower frequencies, indicating distinct electrical properties compared to pure AS. The impedance of REO was influenced by its concentration, with a 1% REO solution showing higher impedance than a 4% solution, possibly due to micelle formation and changes in dielectric properties. Additionally, microfluidic devices enabled precise control over fluid interactions and real-time monitoring, offering valuable insights into REO's behavior in a simulated oral environment. The impedance data demonstrated significant differences in REO-AS mixtures, highlighting potential interactions critical for oral care applications. CONCLUSIONS Rosemary essential oil exhibits unique electrical properties, making it a promising candidate for dental applications, particularly in preventing and treating oral diseases. Microfluidic devices enhance the accuracy and reliability of studying REO's interactions with AS, providing a robust platform for future dental research. The findings suggest that REO could be effectively incorporated into oral care products, offering a natural alternative for combating oral pathogens, reducing inflammation, and protecting against oxidative stress. Future research should focus on clinical trials to validate these findings and explore the synergistic effects of REO with other essential oils.
Collapse
Affiliation(s)
- Karunan Joseph
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bojan Petrović
- Department of Dental Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Aung Thiha
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lazar Milić
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia
| | - Mohd Yazed Ahmad
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Kojić
- Faculty of Technical Science, University of Novi Sad, Novi Sad, Serbia.
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
2
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
3
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
4
|
Hosokawa Y, Hosokawa I, Shimoyama M, Okamoto R, Ozaki K, Hosaka K. The effects of berteroin on inflammatory mediators and antioxidant enzymes expression in human periodontal ligament cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2233-2240. [PMID: 37804343 DOI: 10.1007/s00210-023-02761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Berteroin is a bioactive substance classified as an isothiocyanate found in cruciferous vegetables such as cabbage, arugula, and salad leaves. In this study, we aimed to determine whether berteroin exerts anti-inflammatory effects on human periodontal ligament cells (HPDLCs), a resident cells of periodontal tissue. Berteroin suppressed interleukin (IL)-1β or tumor necrosis factor (TNF)-α-induced chemokines (C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, IL-8, and IL-6) production and intercellular adhesion molecule (ICAM)-1 expression in HPDLCs. In addition, berteroin inhibited phosphorylation of IκB kinase (IKK)- α/ β, nuclear factor (NF)- κB p65, and IκB- α and degradation of IκB- α in the NF-κB pathway induced by IL-1 β or TNF- α stimulation. Moreover, berteroin could inhibit signal transducer and activator of transcription (STAT)3 phosphorylation in TNF- α -stimulated HPDLC. Furthermore, berteroin increased the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase (NQO)1, in IL-1 β or TNF- α -stimulated HPDLCs. These results suggest that berteroin may decrease the production of inflammatory mediators in HPDLCs by suppressing the NF-κB pathway, and may also decrease the local reactive oxygen species (ROS) production in periodontal lesions by increasing the production of antioxidant enzymes.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan.
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Masahiro Shimoyama
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Risa Okamoto
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| |
Collapse
|
5
|
Okamoto R, Hosokawa Y, Hosokawa I, Ozaki K, Hosaka K. Cardamonin decreases inflammatory mediator expression in IL-1β-stimulated human periodontal ligament cells. Mol Biol Rep 2024; 51:222. [PMID: 38281189 DOI: 10.1007/s11033-023-09204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cardamonin is classified as a natural chalcone, and has been reported to possess various bioactive effects. However, there have been limited attempts to utilize cardamonin in the treatment of periodontitis. This study aimed to investigate whether cardamonin has anti-inflammatory effects on human periodontal ligament cells (HPDLCs), which are a component cell of periodontal tissue. Specifically, the study seeks to determine whether cardamonin affects the expression of inflammatory mediators, such as cytokines and adhesion molecules, induced by interleukin-1β (IL-1β) in HPDLCs, as well as the signaling pathways activated by IL-1β. METHODS Cytokine and chemokine levels in supernatants of HPDLCs were measured by ELISA. Western blot analysis was used to measure protein expression and signal transduction pathway activation in HPDLCs. RESULTS We found that IL-1β-induced CC chemokine ligand (CCL)2, CCL5, CCL20, CXC-chemokine ligand (CXCL)10, and interleukin (IL)-6 production and intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expression in HPDLCs were suppressed by cardamonin treatment. We also found that cardamonin suppressed IL-1β-activated nuclear factor (NF)-κB pathway, and the phosphorylation of signal transducer and activator of transcription (STAT)3. Furthermore, cardamonin treatment enhanced the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H dehydrogenase [quinone] 1 (NQO1), in HPDLCs. CONCLUSION In this study, we found that cardamonin could suppress the production of inflammatory mediators in HPDLCs as well as the activation of several signaling pathways induced by IL-1β treatment.
Collapse
Affiliation(s)
- Risa Okamoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan
| | - Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan.
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post LED Photonics, Tokushima University, Tokushima, Tokushima, Japan
| |
Collapse
|
6
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Danisman B, Cicek B, Yildirim S, Bolat I, Kantar D, Golokhvast KS, Nikitovic D, Tsatsakis A, Taghizadehghalehjoughi A. Carnosic Acid Ameliorates Indomethacin-Induced Gastric Ulceration in Rats by Alleviating Oxidative Stress and Inflammation. Biomedicines 2023; 11:biomedicines11030829. [PMID: 36979808 PMCID: PMC10045571 DOI: 10.3390/biomedicines11030829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin (IND) are the most commonly prescribed for inflammation or pain. However, widespread use causes several adverse effects, such as gastric ulcers, upper gastric system bleeding, and erosions. Carnosic acid (CA) is an important natural antioxidant found in rosemary (Rosmarinus essentials) and exhibits a protective effect by suppressing oxidative stress and inflammation. This study aimed to investigate the impact of CA on IND-induced gastric ulceration. Wistar male rats received CA (100 mg/kg) or esomeprazole (ESP) (20 mg/kg, standard drug) by oral gavage for 14 days, after that gastric ulceration was induced by oral administration of 100 mg/kg IND. CA pretreatment attenuated both gross morphological lesions and histopathological alterations. CA strongly reduced IND-induced oxidative stress, verified by a decrease in MDA (p < 0.001) and TOS levels (p < 0.05). Furthermore, an IND-dependent increase in CAT (p < 0.001) and GPx (p < 0.01) activities, as well as a reduction in GSH levels (p < 0.01), were ameliorated by CA pretreatment. CA also attenuated inflammatory damage by suppressing IL-1β (p < 0.01), IL-6 (p < 0.01), and TNFα (p < 0.001) production and increasing Nrf2/HO-1 (p < 0.05) expressions. In conclusion, CA shows a gastroprotective effect by reducing oxidative stress and attenuating inflammation.
Collapse
Affiliation(s)
- Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
- Correspondence: (D.N.); (A.T.)
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11000, Turkey
- Correspondence: (D.N.); (A.T.)
| |
Collapse
|
8
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
9
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Paloukopoulou C, Karioti A. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. PLANTS (BASEL, SWITZERLAND) 2022; 11:3106. [PMID: 36432835 PMCID: PMC9697906 DOI: 10.3390/plants11223106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In the framework of a project aiming at identifying genotypes of Greek rosemary and sage producing high amounts of carnosic acid, an HPLC-PDA method was developed for the determination of the main antioxidant in the fresh leaves. To this end, an effective and repeatable extraction process of the labile diterpene was developed to ensure a good extraction yield. A fast RP-HPLC protocol was developed and optimized to allow for a short and reliable analysis of the unstable target constituent. The HPLC-PDA method was validated for precision and accuracy according to ICH guidelines. Finally, the overall method was validated for precision and accuracy at three concentration levels. The precision was acceptable with % RSD values ranging between 1.42 and 4.35. The recovery ranged between 85.1% and 104.6% with RSD values < 5%, within the acceptable limits. The developed assay was fast and simple and allowed for the fast and accurate determination of carnosic acid and carnosol in the fresh herbs. The methodology was applied to the quantitative analysis of several cultivated samples of S. rosmarinus and S. officinalis, and some of them were revealed to be promising starting materials for the development of Greek genotypes rich in carnosic acid.
Collapse
|
11
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
12
|
Kim JY, Hong HL, Kim GM, Leem J, Kwon HH. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Molecules 2021; 26:molecules26247589. [PMID: 34946671 PMCID: PMC8705858 DOI: 10.3390/molecules26247589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Hyo-Lim Hong
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Gyun Moo Kim
- Department of Emergency Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Jaechan Leem
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| |
Collapse
|
13
|
An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants (Basel) 2021; 10:antiox10091478. [PMID: 34573111 PMCID: PMC8466393 DOI: 10.3390/antiox10091478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Collapse
|
14
|
Nobiletin Decreases Inflammatory Mediator Expression in Tumor Necrosis Factor-Stimulated Human Periodontal Ligament Cells. Mediators Inflamm 2021; 2021:5535844. [PMID: 34335088 PMCID: PMC8289582 DOI: 10.1155/2021/5535844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Nobiletin, a biologically active substance in the skin of citrus fruits, has been reported to be an effective anti-inflammatory, anticancer, and antimicrobial agent. In this study, we aimed to examine the anti-inflammatory effects of nobiletin on tumor necrosis factor- (TNF-) stimulated human periodontal ligament cells (HPDLCs). Our results demonstrated that nobiletin treatment could decrease the expressions of inflammatory cytokines (C-X-C motif chemokine ligand (CXCL)10, C-C motif chemokine ligand (CCL)2, and interleukin- (IL-) 8), matrix metalloproteinases (MMPs) (MMP1 and MMP3), and prostaglandin-endoperoxide synthase 2 (PTGS2) in TNF-stimulated HPDLCs. Moreover, we revealed that nobiletin could inhibit the activation of nuclear factor- (NF-) κB and protein kinase B (AKT1) pathways in TNF-stimulated HPDLCs. Furthermore, nobiletin treatment enhanced nuclear factor, erythroid 2 like 2 (NFE2L2) and heme oxygenase 1 (HMOX1) expressions in TNF-stimulated HPDLCs. In conclusion, these findings suggest that nobiletin can inhibit inflammatory responses in TNF-stimulated HPDLCs by inhibiting NF-κB and AKT1 activations and upregulating the NFE2L2 and HMOX1 expression.
Collapse
|