1
|
Lazzeri K, Auker LA. The Role of Invasion Status and Taxon of Basibionts in Marine Community Structure. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on non-native epibionts typically focus on the organismal-level impacts of epibiosis on basibionts, rather than community-level impacts of this relationship. The purpose of our study was to evaluate if non-native basibionts in general facilitate invasions through epibiosis in Maine compared to native basibiont species. We collected 64 basibiont assemblages including replicate samples of 10 different basibiont taxa on the central Maine coast in October 2019. Each basibiont and associated epibionts were identified to genus, classified as native or non-native to the region where they were collected, and weighed. We found that while there was no association between invasion status of the epibiont and the basibiont, native basibionts had a significantly higher Shannon Diversity Index than non-native basibionts. Although diversity of epibionts was greater on native basibionts, the percentage of invaders varied across basibiont taxa. Specific basibiont taxon characteristics may be more important than status because different taxa have different surface topographies, resulting in varying settlement among epibiont species. Our study indicates that there is differential settlement of epibiont taxa across basibiont taxa, which may help predict, based on surface characteristics, which species support more epibiont taxa. This study, as a snapshot of floating dock fouling communities within a 10 km radius, may indicate that non-native basibionts play a role in changing community structure. Expanding the scope of this initial study to include a wider taxonomic and geographic range should help determine if epibiosis is truly a facilitative process in invasions.
Collapse
|
2
|
Zhou X, Meng J, Yu Z, Miao L, Jin C. The Alterations of Biofilm Formation and EPS Characteristics of a Diatom by a Sponge-Associated Bacterium Psychrobacter sp. SCIENTIFICA 2018; 2018:1892520. [PMID: 30034907 PMCID: PMC6035847 DOI: 10.1155/2018/1892520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A sponge-associated bacterium, which was identified as Psychrobacter sp. in this study, was found with high activity against biofilm formation of benthic diatoms, including Amphora sp., Nitzschia closterium, Nitzschia frustulum, and Stauroneis sp. The activity against diatom biofilm formation by the tested strain was confirmed mostly in the culture supernatant and could be extracted using organic solvents. Treatment with its supernatant crude extract significantly reduced the cells of Stauroneis sp. forming biofilm and slightly increased the cells floating in the culture medium, which results in the ratio of biofilm cell/floating cell altering from 0.736 in control to 0.414 in treatment. Use of the supernatant crude extract led to increased production of extracellular polymeric substances (EPSs) by diatom Stauroneis sp. from 16.66 to 41.59 (g/g cell dry weight). The increase in EPS production was mainly contributed by soluble EPS (SL-EPS) and followed by the EPS that was tightly bound to biofilm cells (BF-TB-EPS). In addition, the supernatant crude extract caused significant changes in the monosaccharides composition of the EPS of Stauroneis sp. Specifically, glucuronic acid (Glc-A) and N-acetyl-D-glucosamine (Glc-NAc) in BF-TB-EPS were 55% fold decreased and 1219% fold increased, respectively. Based on our findings, we proposed that these changes in monosaccharides composition might lead to a decreased biofilm formation efficiency of diatom.
Collapse
Affiliation(s)
- Xiaojian Zhou
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
- Marine Science and Technology Institute, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
| | - Jie Meng
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
| | - Zhaowei Yu
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
| | - Li Miao
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
| | - Cuili Jin
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
- Marine Science and Technology Institute, Yangzhou University, No. 196 Huayang West Street, Hanjiang District, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 2016; 81:1477-89. [PMID: 25527543 DOI: 10.1128/aem.03290-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum- quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.
Collapse
|
4
|
Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington. World J Microbiol Biotechnol 2013; 30:1325-34. [DOI: 10.1007/s11274-013-1557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/09/2013] [Indexed: 11/25/2022]
|
5
|
Gittens JE, Smith TJ, Suleiman R, Akid R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv 2013; 31:1738-53. [PMID: 24051087 DOI: 10.1016/j.biotechadv.2013.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/25/2023]
Abstract
Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®, have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound. Functionalized coatings have been designed to repel the settlement and permanent attachment of fouling organisms via modification of either or both surface topography and surface chemistry, or by interfering with the natural mechanisms via which fouling organisms settle upon and adhere to surfaces. A large number of technologies are being developed towards producing new coatings that will be able to resist biofouling over a period of years and thus truly replace biocides as antifouling systems. In addition urgent research is directed towards the exploitation of mechanisms used by living organisms designed to repel the settlement of fouling organisms. These biomimetic strategies include the production of antifouling enzymes and novel surface topography that are incompatible with permanent attachment, for example, by mimicking the microstructure of shark skin. Other research seeks to exploit chemical signals and antimicrobial agents produced by diverse living organisms in the environment to prevent settlement and growth of fouling organisms on vulnerable surfaces. Novel polymer-based technologies may prevent fouling by means of unfavourable surface chemical and physical properties or by concentrating antifouling compounds around surfaces.
Collapse
Affiliation(s)
- Jeanette E Gittens
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | | | | |
Collapse
|
6
|
Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 2012; 3:292. [PMID: 22936927 PMCID: PMC3425911 DOI: 10.3389/fmicb.2012.00292] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/24/2012] [Indexed: 12/27/2022] Open
Abstract
In the aquatic environment, biofilms on solid surfaces are omnipresent. The outer body surface of marine organisms often represents a highly active interface between host and biofilm. Since biofilms on living surfaces have the capacity to affect the fluxes of information, energy, and matter across the host's body surface, they have an important ecological potential to modulate the abiotic and biotic interactions of the host. Here we review existing evidence how marine epibiotic biofilms affect their hosts' ecology by altering the properties of and processes across its outer surfaces. Biofilms have a huge potential to reduce its host's access to light, gases, and/or nutrients and modulate the host's interaction with further foulers, consumers, or pathogens. These effects of epibiotic biofilms may intensely interact with environmental conditions. The quality of a biofilm's impact on the host may vary from detrimental to beneficial according to the identity of the epibiotic partners, the type of interaction considered, and prevailing environmental conditions. The review concludes with some unresolved but important questions and future perspectives.
Collapse
Affiliation(s)
- Martin Wahl
- Department Benthic Ecology, Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Franz Goecke
- Kieler Wirkstoff-Zentrum at Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Antje Labes
- Kieler Wirkstoff-Zentrum at Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Sergey Dobretsov
- Department Marine Science and Fisheries, Sultan Qaboos UniversityMuscat, Oman
| | - Florian Weinberger
- Department Benthic Ecology, Helmholtz Centre for Ocean Research KielKiel, Germany
| |
Collapse
|
7
|
Chiu JM, Li S, Li A, Po B, Zhang R, Shin PK, Qiu JW. Bacteria associated with skeletal tissue growth anomalies in the coral Platygyra carnosus. FEMS Microbiol Ecol 2011; 79:380-91. [DOI: 10.1111/j.1574-6941.2011.01225.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jill M.Y. Chiu
- School of Biological Sciences; The University of Hong Kong; Hong Kong; China
| | - Sam Li
- School of Biological Sciences; The University of Hong Kong; Hong Kong; China
| | - Amy Li
- School of Biological Sciences; The University of Hong Kong; Hong Kong; China
| | - Beverly Po
- School of Biological Sciences; The University of Hong Kong; Hong Kong; China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen; Fujian; China
| | - Paul K.S. Shin
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong; China
| | - Jian-Wen Qiu
- Department of Biology; Hong Kong Baptist University; Hong Kong; China
| |
Collapse
|
8
|
Gerçe B, Schwartz T, Syldatk C, Hausmann R. Differences between bacterial communities associated with the surface or tissue of Mediterranean sponge species. MICROBIAL ECOLOGY 2011; 61:769-782. [PMID: 21246194 DOI: 10.1007/s00248-011-9802-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
Bacterial communities associated with the surfaces of several Mediterranean sponge species (Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Geodia sp., Tethya sp., Axinella polypoides, Dysidea avara, and Oscarella lobularis) were compared to those associated with the mesohyl of sponges and other animate or inanimate reference surfaces as well as with those from bulk seawater. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified bacterial 16S ribosomal RNA genes obtained from the surfaces and tissues of these sponges demonstrated that the bacterial communities were generally different from each other. The bacterial communities from sponges were different from those on reference surfaces or from bulk seawater. Additionally, clear distinctions in 16S rDNA fingerprint patterns between the bacterial communities from mesohyl samples of "high-microbial abundance (HMA) sponges" and "low-microbial abundance sponges" were revealed by DGGE and cluster analysis. A dominant occurrence of particularly GC-rich 16S ribosomal DNA (rDNA) fragments was found only in the DGGE banding pattern obtained from the mesohyl of HMA sponges. Furthermore, sequencing analysis of 16S rDNA fragments obtained from mesohyl samples of HMA sponges revealed a dominant occurrence of sponge-associated bacteria. The bacterial communities within the mesohyl of HMA sponges showed a close relationship to each other and seem to be sponge-specific.
Collapse
Affiliation(s)
- Berna Gerçe
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, PO Box Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany.
| | | | | | | |
Collapse
|
9
|
Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME JOURNAL 2010; 4:817-28. [PMID: 20090788 DOI: 10.1038/ismej.2009.157] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Earlier studies have shown that biofilms can mediate the larval settlement of the polychaete Hydroides elegans and that changes in the bacterial community structure and density of biofilms often alter the larval settlement response. However, the chemical cues that mediate this response remain unknown. In this study, both successional changes in the bacterial community structure and the chemical profiles of subtidal biofilms are described and related to the larval settlement response. Multispecies biofilms were developed on polystyrene Petri dishes and granite rock in the subtidal zone over a period of 20 days. The effects of the substratum and age on the bacterial community structure and chemical profiles of the biofilms were evaluated with two molecular methods (microarray (PhyloChip) and denaturing gradient gel electrophoresis) and with gas chromatography-mass spectrometry, respectively. Both age and substratum altered the bacterial community structures and chemical profiles of the biofilms. Age had a greater effect in shaping the bacterial community structure than did the substratum. In contrast, the type of substratum more strongly affected the chemical profile. Extracts of biofilms of different ages, which developed on different substrata, were tested for the settlement of H. elegans larvae. The extracts induced larval settlement in a biofilm-age-dependent manner, and extracts originating from different substrata of the same age showed no differences in larval settlement. Our results suggest that the larval settlement response cannot be predicted by the overall chemical composition of the biofilm alone.
Collapse
Affiliation(s)
- Hong Chun Chung
- KAUST Global Partnership Program, Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
10
|
Siboni N, Martinez S, Abelson A, Sivan A, Kushmaro A. Conditioning film and initial biofilm formation on electrochemical CaCO3 deposition on a metallic net in the marine environment. BIOFOULING 2009; 25:675-683. [PMID: 20183126 DOI: 10.1080/08927010903097204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrochemical deposition of minerals is a unique technology for artificial reef constructions, relying on calcium carbonate (CaCO3) build-up over metallic structures through electrolysis of seawater. The present study traces the first 72 h following electric current termination on bacterial biofilm build-up on a metallic net covered with CaCO3. 16S rRNA clone libraries indicated a dynamic succession. Proteobacteria and Bacteroidetes were evident at all sampling times while Cyanobacteria appeared only within the first 8 h. A significant increase in total organic carbon (TOC) and total protein was observed after 48 h with a significant correlation (R(2) = 0.74), indicating TOC is a good tool for characterizing initial biofilm formation. 18S rRNA gene sequences obtained 72 h following current termination indicated a significant presence of Cnidarians (51%). Understanding the dynamics among primary bacterial settlers is important because they play a crucial role in driving the colonization of sessile invertebrate communities on artificial, as well as natural surfaces.
Collapse
Affiliation(s)
- Nachshon Siboni
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | | | | | |
Collapse
|
11
|
Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol 2009; 36:1047-56. [PMID: 19471982 DOI: 10.1007/s10295-009-0588-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
In this study, we screened seven novel sponge-associated marine bacteria for their antibacterial and antilarval-settlement activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-bacterial-growth activity of crude extracts of each bacterium was evaluated by the disk-diffusion assay. Extracts of four potent bacteria with high and broad spectra of antibacterial activity were further separated with solvents of different polarities (hexane and ethyl acetate). To evaluate their indirect inhibitive effect on larval settlement, we tested for their antibiofilm formation activity against two of the test bacteria (Vibrio halioticoli and Loktanella hongkongensis) inductive to Hydroides elegans larval settlement. About 60 and 87% of the extracts inhibited biofilm formation by V. halioticoli and by L. hongkongensis respectively. The extracts were also tested for their direct antilarval-settlement activity against the barnacle Balanus amphitrite and the polychaete H. elegans; 87% of the extracts had a strong inhibitive effect on larval settlement of both species. Extracts of two of the isolates completely inhibited larval settlement of B. amphitrite at 70 microg ml(-1) and H. elegans at 60 microg ml(-1). The organic extracts of Winogradskyella poriferorum effectively inhibited the larval settlement of both H. elegans and B. amphitrite and the biofilm formation of the two bacterial species. The metabolites present in the active crude extracts were profiled using GC MS, and the most prevalent metabolites present in all extracts were identified. This study successfully identified potential new sources of antifouling compounds.
Collapse
|
12
|
Rojas R, Miranda CD, Amaro AM. Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval cultures of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). MICROBIAL ECOLOGY 2009; 57:129-139. [PMID: 18548185 DOI: 10.1007/s00248-008-9401-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 04/26/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Mass mortalities of larval cultures of Chilean scallop Argopecten purpuratus have repeatedly occurred in northern Chile, characterized by larval agglutination and accumulation in the bottom of rearing tanks. The exopolysaccharide slime (EPS) producing CAM2 strain was isolated as the primary organism from moribund larvae in a pathogenic outbreak occurring in a commercial hatchery producing larvae of the Chilean scallop Argopecten purpuratus located in Bahía Inglesa, Chile. The CAM2 strain was characterized biochemically and was identified by polymerase chain reaction amplification of 16S rRNA as Halomonas sp. (Accession number DQ885389.1). Healthy 7-day-old scallop larvae cultures were experimentally infected for a 48-h period with an overnight culture of the CAM2 strain at a final concentration of ca. 10(5) cells per milliliter, and the mortality and vital condition of larvae were determined by optical and scanning electron microscopy (SEM) to describe the chronology of the disease. Pathogenic action of the CAM2 strain was clearly evidenced by SEM analysis, showing a high ability to adhere and detach larvae velum cells by using its "slimy" EPS, producing agglutination, loss of motility, and a posterior sinking of scallop larvae. After 48 h, a dense bacterial slime on the shell surface was observed, producing high percentages of larval agglutination (63.28 +/- 7.87%) and mortality (45.03 +/- 4.32%) that were significantly (P < 0.05) higher than those of the unchallenged control cultures, which exhibited only 3.20 +/- 1.40% dead larvae and no larval agglutination. Furthermore, the CAM2 strain exhibited a high ability to adhere to fiberglass pieces of tanks used for scallop larvae rearing (1.64 x 10(5) cells adhered per square millimeters at 24 h postinoculation), making it very difficult to eradicate it from the culture systems. This is the first report of a pathogenic activity on scallop larvae of Halomonas species, and it prompts the necessity of an appraisal on biofilm-producing bacteria in Chilean scallop hatcheries.
Collapse
Affiliation(s)
- Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | | |
Collapse
|
13
|
Briand JF. Marine antifouling laboratory bioassays: an overview of their diversity. BIOFOULING 2009; 25:297-311. [PMID: 19191083 DOI: 10.1080/08927010902745316] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.
Collapse
Affiliation(s)
- Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France.
| |
Collapse
|
14
|
Qi SH, Zhang S, Yang LH, Qian PY. Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis. Nat Prod Res 2008; 22:154-66. [PMID: 18075899 DOI: 10.1080/14786410701642441] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we investigated the potential antilarval and antibacterial activity of secondary metabolites of the gorgonians Subergorgia suberosa and Scripearia gracillis from the South China Sea. Fresh specimens of these two gorgonian corals were collected from a shallow reef in Sanya Bay of Hainan Island and extracted with different solvents. Antilarval activity of the chemical extracts and pure compounds was evaluated in settlement inhibition assays with laboratory-reared Balanus amphitrite and Bugula neritina larvae, while antibacterial activity was assessed with disc diffusion bioassay on growth inhibition of 15 marine bacterial species. Using bioassay-guided procedures, we purified and identified nine compounds. The most potent metabolites produced by these gorgonian corals were subergorgic acid and pregn-4-ene-3, 20-dione extracted from S. suberosa. Our results show that the gorgonian coral S. suberosa and S. gracillis can produce potent anti-fouling compounds that deserve further exploration.
Collapse
Affiliation(s)
- S H Qi
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, The Chinese Academy of Sciences, Guangzhou 510301 Guangdong, PR China
| | | | | | | |
Collapse
|
15
|
Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol 2007; 73:7844-52. [PMID: 17965210 DOI: 10.1128/aem.01543-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicata and Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities ranging from 10(2) to 10(8) cells cm(-2) were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (10(2) to 10(3) cells cm(-2)) of P. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 10(4) to 10(5) cells cm(-2). Similarly, low cell densities (10(3) to 10(4)cells cm(-2)) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 x 10(3) cells cm(-2)) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly occur in situ.
Collapse
|
16
|
Huang YL, Dobretsov S, Xiong H, Qian PY. Effect of biofilm formation by Pseudoalteromonas spongiae on induction of larval settlement of the polychaete Hydroides elegans. Appl Environ Microbiol 2007; 73:6284-8. [PMID: 17704279 PMCID: PMC2074998 DOI: 10.1128/aem.00578-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of culture conditions and chloramphenicol treatment on the induction of the marine bacterium Pseudoalteromonas spongiae to larval settlement of Hydroides elegans were investigated. The results showed that P. spongiae cells grown in the medium containing both yeast extract and peptone (YP-grown P. spongiae) was highly inductive to larval settlement, whereas P. spongiae cells grown in the medium containing only peptone (P-grown P. spongiae) or YP-grown P. spongiae cells treated with chloramphenicol at the onset of biofilm development (YPC-grown P. spongiae) did not induce larval settlement. Analysis of biofilm formation, biofilm structure, and the surface protein profile indicated that only the induction-capable YP-grown P. spongiae formed a well-developed biofilm, while the P-grown P. spongiae and the YPC-grown P. spongiae did not. We report here for the first time that bacterial biofilm formation was associated with its induction of larval settlement.
Collapse
Affiliation(s)
- Yi-Li Huang
- Coastal Marine Laboratory/Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | | | | | | |
Collapse
|
17
|
Yang LH, Xiong H, Lee OO, Qi SH, Qian PY. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 2007; 44:625-30. [PMID: 17576224 DOI: 10.1111/j.1472-765x.2007.02125.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Experiments were designed to investigate the effect of agitation on the production of violacein by a marine bacterium Pseudoalteromonas luteoviolacea. METHODS AND RESULTS A marine sponge-associated bacterium, P. luteoviolacea, was grown at different agitation speeds. Agitation did not have a significant effect on bacterial growth, but had a profound effect on the size of bacterial aggregate. The production of violacein was the highest under stagnant conditions and decreased with the increase of the agitation speed. CONCLUSIONS Agitation affected the aggregation of bacterial cells, which, in turn, affected violacein production by P. luteoviolacea. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that P. luteoviolacea produced the highest amount of violacein when it was cultured under stagnant conditions.
Collapse
Affiliation(s)
- L H Yang
- Department of Biology and Coastal Marine Laboratory, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|
18
|
Huang YL, Dobretsov S, Ki JS, Yang LH, Qian PY. Presence of acyl-homoserine lactone in subtidal biofilm and the implication in larval behavioral response in the polychaete Hydroides elegans. MICROBIAL ECOLOGY 2007; 54:384-92. [PMID: 17394040 DOI: 10.1007/s00248-007-9210-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 01/05/2007] [Accepted: 01/07/2007] [Indexed: 05/14/2023]
Abstract
Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 microg cm(-minus;2) (3.36 mmol l(-minus;1)). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.
Collapse
Affiliation(s)
- Yi-Li Huang
- Coastal Marine Laboratory, Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
19
|
Xu Y, Miao L, Li XC, Xiao X, Qian PY. Antibacterial and antilarval activity of deep-sea bacteria from sediments of the West Pacific Ocean. BIOFOULING 2007; 23:131-7. [PMID: 17453737 DOI: 10.1080/08927010701219323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 microg ml(-1).
Collapse
Affiliation(s)
- Ying Xu
- Department of Biology/Coastal Marine Laboratory, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
20
|
Guenther J, Walker-Smith G, Warén A, De Nys R. Fouling-resistant surfaces of tropical sea stars. BIOFOULING 2007; 23:413-8. [PMID: 17882628 DOI: 10.1080/08927010701570089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.
Collapse
Affiliation(s)
- Jana Guenther
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
21
|
Lee OO, Lau SCK, Qian PY. Consistent bacterial community structure associated with the surface of the sponge Mycale adhaerens bowerbank. MICROBIAL ECOLOGY 2006; 52:693-707. [PMID: 16909349 DOI: 10.1007/s00248-006-9077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 03/09/2006] [Accepted: 04/23/2006] [Indexed: 05/11/2023]
Abstract
As a crucial step in the identification of possible association between bacteria and sponges, we investigated if a unique bacterial population community was consistently associated with the surface of the sponge Mycale adhaerens, irrespective of environmental conditions. The composition of bacterial communities associated with the surface of sponges at three geographically distinctive sites in Hong Kong waters over four seasons was examined by analyzing terminal restriction fragment length polymorphism of the bacterial 16S rRNA genes. Statistical analysis indicated that bacterial communities on inanimate reference surfaces (polystyrene dishes deployed in the close vicinity of the sponge colonies for 7 days) had a relatively high degree of both site and seasonal specificities (R statistics of pairwise comparisons approximately 1), which might be attributed to the differences in environmental conditions at different sites and seasons. On the contrary, the sponge-surface-associated bacterial communities from different sites and seasons were hardly distinguishable from each other (lowest R = -0.16) but were rather distinctive from the reference bacterial communities (R approximately 1), suggesting a highly stable and distinctive bacteria-sponge association irrespective of the environmental conditions. The occurrence of some unique bacterial types in the sponge-surface-associated communities over space and time suggests that the associations are consistent and specific.
Collapse
Affiliation(s)
- On On Lee
- Department of Biology/Coastal Marine Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | |
Collapse
|
22
|
Kwong TFN, Miao L, Li X, Qian PY. Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:634-40. [PMID: 16924374 DOI: 10.1007/s10126-005-6146-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 05/08/2006] [Indexed: 05/11/2023]
Abstract
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 microg ml-1 to 3.81 microg ml-1 while the LC50 was 266.68 microg ml-1 for B. amphitrite cyprids; EC50 ranged from 0.67 microg ml-1 to 0.78 microg ml-1, and LC50 was 2.64 microg ml-1 for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mug per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.
Collapse
Affiliation(s)
- Theresa Fuk Ning Kwong
- Department of Biology and Coastal Marine Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Miao L, Kwong TFN, Qian PY. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol 2006; 72:1063-73. [PMID: 16538484 DOI: 10.1007/s00253-006-0376-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/27/2022]
Abstract
The effects of culture conditions and competitive cultivation with bacteria on mycelial growth, metabolite profile, and antibacterial activity of the marine-derived fungus Arthrinium c.f. saccharicola were investigated. The fungus grew faster at 30 degrees C, at pH 6.5 and in freshwater medium, while exhibited higher antibacterial activity at 25 degrees C, at pH 4.5, 5.5, and 7.5, and in 34 ppt seawater medium. The fungus grew faster in a high-nitrogen medium that contained 0.5% peptone and/or 0.5% yeast extract, while exhibiting higher bioactivity in a high-carbon medium that contained 2% glucose. The fungal growth was inhibited when it was co-cultured with six bacterial species, particularly the bacterium Pseudoalteromonas piscida. The addition of a cell free culture broth of this bacterium significantly increased the bioactivity of the fungus. Metabolite profiles of the fungus revealed by gas chromatography (GC)-mass spectrometry showed clear difference among different treatments, and the change of relative area of three peaks in GC profile followed a similar trend with the bioactivity variation of fungal extracts. Our results showed clear differences in the optimal conditions for achieving maximal mycelial growth and bioactivity of the fungus, which is important for the further study on the mass cultivation and bioactive compounds isolation from this fungus.
Collapse
Affiliation(s)
- Li Miao
- Coastal Marine Laboratory, Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | |
Collapse
|
24
|
Dobretsov S, Dahms HU, Qian PY. Inhibition of biofouling by marine microorganisms and their metabolites. BIOFOULING 2006; 22:43-54. [PMID: 16551560 DOI: 10.1080/08927010500504784] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Biology/Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | | | | |
Collapse
|
25
|
Yang LH, Lee OO, Jin T, Li XC, Qian PY. Antifouling properties of 10beta-formamidokalihinol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa. BIOFOULING 2006; 22:23-32. [PMID: 16551558 DOI: 10.1080/08927010500498623] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many soft-bodied sessile marine invertebrates such as sponges and soft corals defend themselves against fouling directly through the production of antifouling compounds, or indirectly through regulating the epibiotic microbes that affect larval settlement. In this study, 10beta-formamidokalihinol-A and kalihinol A were isolated and purified from the marine sponge Acanthella cavernosa (Dendy). The results indicated that both compounds inhibited the growth of bacteria isolated from the natural environment whereas kalihinol A suppressed larval settlement of a major fouling polychaete, Hydroides elegans with an EC50 of 0.5 microg ml(-1). Kalihinol A was incorporated in Phytagel that was exposed to the bacterial consortia in natural seawater for biofilm formation. Biofilms that developed on the Phytagel surfaces were analysed for bacterial abundance and bacterial species composition using a DNA fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP). The results showed that kalihinol A only slightly reduced bacterial abundance (t-test, p = 0.0497), but modified the bacterial species composition of the biofilms. Inhibition of H. elegans larval settlement was observed when biofilms developed under the influence of kalihinol A were exposed to larvae, suggesting that compounds like kalihinol A from the sponge A. cavernosa may change bacterial community composition on the sponge surface, which in turn, modulates larval settlement of fouling organisms.
Collapse
Affiliation(s)
- L H Yang
- Department of Biology/Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|
26
|
Amaro AM, Fuentes MS, Ogalde SR, Venegas JA, Suárez-Isla BA. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J Eukaryot Microbiol 2005; 52:191-200. [PMID: 15926994 DOI: 10.1111/j.1550-7408.2005.00031.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The toxic dinoflagellate Alexandrium catenella isolated from fjords in Southern Chile produces several analogues of saxitoxin and has been associated with outbreaks of paralytic shellfish poisoning. Three bacterial strains, which remained in close association with this dinoflagellate in culture, were isolated by inoculating the dinoflagellate onto marine agar. The phenotypically different cultivable bacterial colonies were purified. Their genetic identification was done by polymerase chain reaction amplification of the 16S rRNA genes. Partial sequence analysis suggested that the most probable affiliations were to two bacterial phyla: Proteobacteria and the Cytophaga group. The molecular identification was complemented by morphological data and biochemical profiling. The three bacterial species, when grown separately from phytoplankton cells in high-nutrient media, released algal-lytic compounds together with aminopeptidase, lipase, glucosaminidase, and alkaline phosphatase. When the same bacteria, free of organic nutrients, were added back to the algal culture they displayed no detrimental effects on the dinoflagellate cells and recovered their symbiotic characteristics. This observation is consistent with phylogenetic analysis that reveals that these bacteria correspond to species distinct from other bacterial strains previously classified as algicidal bacteria. Thus, bacterial-derived lytic activities are expressed only in the presence of high-nutrient culture media and it is likely that in situ environmental conditions may modulate their expression.
Collapse
Affiliation(s)
- Ana M Amaro
- Laboratory of Marine Toxins, Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 6530499, Chile.
| | | | | | | | | |
Collapse
|
27
|
Khandeparker L, Desai D, Shirayama Y. Larval development and post-settlement metamorphosis of the barnacle Balanus albicostatus Pilsbry and the serpulid polychaete Pomatoleios kraussii Baird: Impact of a commonly used antifouling biocide, Irgarol 1051. BIOFOULING 2005; 21:169-80. [PMID: 16371337 DOI: 10.1080/08927010500221728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
AbstractThe impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality increased with an increase in the concentration of Irgarol 1051, and there was a shift in the larval stage targeted from advanced instars to early instars. Nauplii that survived to the cyprid instar stage when reared in the presence of Irgarol 1051 showed prolonged instar and total naupliar duration when compared to the controls. The post-settlement metamorphosis of cyprids significantly varied with Irgarol concentration and also with biofilm age. One and 2-d-old untreated biofilms showed higher metamorphosis when compared to 5-d-old biofilms. However, when the biofilms that promoted cyprid metamorphosis were treated with Irgarol 1051 at low concentrations, metamorphosis rates decreased. Cyprids were prevented from metamorphosing completely by biofilms treated at the highest concentration of Irgarol 1051. Inhibition of metamorphosis was also observed in the case of competent polychaete larvae when exposed to Irgarol 1051 compared to those exposed to metamorphosis inducers such as 3-iso-butyl-1-methylxanthine (IBMX) and natural biofilms. Identification of the pathway(s) that caused the promotory biofilms to become toxic when exposed to Irgarol 1051 is discussed.
Collapse
|
28
|
Satuito CG, Bao W, Yang J, Kitamura H. Survival, growth, settlement and metamorphosis of refrigerated larvae of the mussel Mytilus galloprovincialis Lamarck and their use in settlement and antifouling bioassays. BIOFOULING 2005; 21:217-25. [PMID: 16371341 DOI: 10.1080/08927010500375300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Straight-hinge veliger and pediveliger larvae of the mussel Mytilus galloprovincialis were refrigerated for varying periods for use in bioassays. Straight-hinge veliger larvae grew to the umbo-veliger stage after 2 months in the refrigerator, but no pediveligers were observed during the 3-month refrigeration period. The average survival rate of larvae in the refrigerator was 79% after 1 month, but gradually decreased with the refrigeration period, and was as low as 22% after 3 months. All refrigerated larvae grew to the pediveliger stage in the incubator at 17 degrees C at the same rate as that of the control larvae that were not refrigerated. Settlement and metamorphosis of pediveligers from both refrigerated and control groups were facilitated by microbial film and epinephrine and inhibited by phentolamine. Thus, refrigeration can be used as an effective method of storing larvae of M. galloprovincialis for use in assays to assess candidate settlement inducers and antifouling substances.
Collapse
Affiliation(s)
- Cyril Glenn Satuito
- Graduate School of Science and Technology, Nagasaki University, Nagasaki, Japan.
| | | | | | | |
Collapse
|