1
|
Nomura M, Okamura H, Horie Y, Yap CK, Emmanouil C, Uwai S, Kawai H. Effects of antifouling compounds on the growth of macroalgae Undaria pinnatifida. CHEMOSPHERE 2023; 312:137141. [PMID: 36343734 DOI: 10.1016/j.chemosphere.2022.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds are some of the principal primary producers of marine environments, and they are important ecological elements of coastal ecosystems. The effects of harmful chemicals on seaweeds may adversely affect coastal ecosystems, hence we aimed to develop a new phytotoxicity test using the gametophytes of a common temperate kelp species, Undaria pinnatifida (KU-1630), for the widely used antifouling chemical substances Cybutryne, Diuron, Cu2+, and Zn2+. Toxicity to gametophytes of U. pinnatifida was assessed by comparing the relative growth rate (RGR) at the logarithmic growth phase. Fragmentation method, initial algal biomass, photon irradiance, and adhesive period were investigated for developing optimal test conditions. Cybutryne exposure tests were performed with seven replicates and control, the RGR ranging from 0.17 to 0.19, while mean 7-day EC50 and no observed effect concentration (NOEC) were 5.1 μg/L and 1.8 μg/L, respectively. The 7-day EC50 for other antifoulants was 14 μg/L for Diuron, 17 μg/L for Cu2+, and 1500 μg/L for Zn2+. This test method demonstrated high sensitivity and reproducibility, and it may be added to the routine methods used for toxicity evaluation of hazardous chemicals.
Collapse
Affiliation(s)
- M Nomura
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - H Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Y Horie
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - C K Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - C Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - S Uwai
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - H Kawai
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
2
|
Matching Forces Applied in Underwater Hull Cleaning with Adhesion Strength of Marine Organisms. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4040066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Yasani BR, Martinelli E, Galli G, Glisenti A, Mieszkin S, Callow ME, Callow JA. A comparison between different fouling-release elastomer coatings containing surface-active polymers. BIOFOULING 2014; 30:387-399. [PMID: 24579757 DOI: 10.1080/08927014.2013.878864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.
Collapse
Affiliation(s)
- B R Yasani
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Gabilondo R, Graham H, Caldwell GS, Clare AS. Laboratory culture and evaluation of the tubeworm Ficopomatus enigmaticus for biofouling studies. BIOFOULING 2013; 29:869-878. [PMID: 23844848 DOI: 10.1080/08927014.2013.810214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ficopomatus enigmaticus, a euryhaline tube-building polychaete worm with a subtropical to temperate distribution, is an increasingly problematic fouling organism. In this study, laboratory protocols for maintaining adult broodstock, destructive spawning, larval culture and a settlement bioassay were developed. The method routinely yielded approximately 200 larvae per spawning adult. The mean number of eggs released by females was 1517 and the mean number of spermatozoids per male was 4.425 × 10(6). Fertilisation success, using an initial concentration of 2.5 × 10(6) spermatozoids and 45 eggs ml(-1), was 76% after a contact time of 60 min. The first cleavage occurred after 20 min and the trocophore larval stage was attained by 18 h. Metatrochophores were observed 4 d post-fertilisation and were competent to settle 1 day later. The proportion of larvae that settled after 48 h was surface-dependent: 10.24% on glass, 1.39% on polystyrene and 11.07% on a poly(dimethylsiloxane) elastomer. The presence of a biofilm on glass increased the rate of settlement 7-fold compared to clean glass.
Collapse
Affiliation(s)
- Regina Gabilondo
- School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | |
Collapse
|
5
|
Evariste E, Gatley CM, Detty MR, Callow ME, Callow JA. The performance of aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel coatings against the marine alga Ectocarpus crouaniorum: relative roles of surface energy and charge. BIOFOULING 2013; 29:171-84. [PMID: 23330687 DOI: 10.1080/08927014.2012.758717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of a series of xerogel coatings modified with aminoalkyl/fluorocarbon/hydrocarbon groups on the adhesion of a new test species, the filamentous brown alga Ectocarpus crouaniorum, has been explored, and compared with the green alga Ulva linza. The results showed that E. crouaniorum adhered weakly to the less polar, low wettability coatings in the series, but stronger adhesion was shown on polar, higher surface energy coatings containing aminoalkyl groups. The results from a separate series of coatings tuned to have similar surface energies and polarities after immersion in artificial seawater (ASW), but widely different surface charges, demonstrated that surface charge was more important than surface energy and polarity in determining the adhesion strength of both E. crouaniorum and U. linza on xerogel coatings. No correlation was found between adhesion and contact angle hysteresis. X-ray photoelectron spectroscopy analysis of samples after immersion in ASW confirmed the presence of charged ammonium groups on the surface of the aminoalkylated coatings.
Collapse
|