1
|
Moncayo-Riascos I, Hoyos BA. Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Aldred N, Gatley-Montross CM, Lang M, Detty MR, Clare AS. Correlative assays of barnacle cyprid behaviour for the laboratory evaluation of antifouling coatings: a study of surface energy components. BIOFOULING 2019; 35:159-172. [PMID: 30855984 DOI: 10.1080/08927014.2019.1577394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Laboratory evaluation of antifouling coatings is underpinned by settlement studies with specific fouling organisms. Established methods provide insight into the likelihood of failure of a particular coating system, but can neglect the process of surface selection that often precedes attachment. The present approach for quantifying the exploratory behaviour of barnacle cypris larvae suggested that inspection behaviour can be a rapid and predictive proxy for settlement. Two series of xerogels with comparable total surface energy, but different dispersive and polar components, were evaluated. Settlement assays with three-day-old cyprids of Balanus improvisus demonstrated that while attachment was not linked directly to dispersive free energy, the composition of the xerogel was nevertheless significant. Behavioural analysis provided insight into the mechanism of surface rejection. In the case of a 50:50 PH/TEOS (phenyltriethoxysilane-based) xerogel vs a 50:50 TFP/TEOS (3,3,3-trifluoropropyltrimethoxysilane-based) xerogel, wide-searching behaviour was absent on the former.
Collapse
Affiliation(s)
- Nick Aldred
- a School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne, UK
| | - Caitlyn M Gatley-Montross
- b Department of Natural Sciences , Daemen College , Amherst , NY , USA
- c Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Meredith Lang
- c Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Michael R Detty
- c Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Anthony S Clare
- a School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Ghoussoub YE, Fares HM, Delgado JD, Keller LR, Schlenoff JB. Antifouling Ion-Exchange Resins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41747-41756. [PMID: 30456944 DOI: 10.1021/acsami.8b12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large quantities of organic ion-exchange resins are used worldwide for water decontamination and polishing. Fouling by microorganisms and decomposition products of natural organic matter severely limits the lifetime of these resins. Much research has thus been invested in polymer-based antifouling coatings. In the present study, poly(4-styrenesulfonate) (PSS) and a co-polymer of PSS and a zwitterionic group were used to spontaneously coat commercial Dowex 1X8 anion-exchange resin. UV-visible spectroscopy provided a precise measure of the kinetics and amount of PSS sorbed onto or into resin beads. When challenged with Chlamydomonas reinhardtii algae, uncoated resin was rapidly fouled by algae. Coating the resin with either the homopolymer of PSS or the co-polymer with zwitterion eliminated fouling. Using narrow- and wide-molecular-weight distribution PSS, a cutoff molecular weight of about 240 repeat units was found, above which PSS was unable to diffuse into the resin. Thus, only one monolayer of added PSS was sufficient to confer a highly desirable antifouling property on this resin while consuming less than 0.1% of the exchanger capacity. Radioactive sulfate ions were used to probe the kinetics of (self)exchange, which were virtually unaffected by the PSS coating. This resin treatment is a fast, ultra-low-cost step for potentially enhancing the lifetime of ion exchangers.
Collapse
|
5
|
Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics. Biointerphases 2017; 12:051003. [DOI: 10.1116/1.5008988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Destino JF, Craft AK, Bright FV. Three-Dimensional pH Mapping within Model Hybrid Xerogel Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4119-4128. [PMID: 28388846 DOI: 10.1021/acs.langmuir.6b04518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When xerogel films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS) or 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and TEOS are formed on Al2O3 they exhibit chemically segregated domains with unique chemistries and topographies. These characteristics are important for marine antifouling. By using the ratiometric fluorescent probe 5 (and 6)-carboxy SNARF-1 (C.SNARF-1) in concert with confocal fluorescence microscopy, we determine the pH in three dimensions within these hybrid films. For the COE/TEOS film, 4-5 μm diameter dendritically shaped features form, and they extend ∼100 nm above the film base. These dendritic features are acidic (pH < 7) in comparison to the film base. Their average diameter decreases as we progress from the solution-film interface toward the film-Al2O3 interface. Planes located at the solution-film interface, film center, and film-Al2O3 interface exhibit acidic surface areas that are 20% below, 50% above, and 70% below the average COE mole fraction used to create the film. In the APTES/C8/TEOS films, 1-3 μm diameter mesa-shaped features form, and they extend up to 450 nm above the film base. These mesa features are basic (pH > 7) in comparison to the film base and are columnar in shape, extending without change in diameter throughout the entire film. From the solution-film interface the planes located within the first 3/4 of the film exhibit basic surface areas that are equivalent to the average APTES mole fraction used to create the film. However, as one approaches the film-Al2O3 interface, many new 100-200 nm basic subsurface regions appear. The basic surface area in those film planes within 400-500 nm of the film-Al2O3 interface are enriched in APTES by up to 500% above the average APTES mole fraction used to create the film.
Collapse
Affiliation(s)
- Joel F Destino
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| | - Andrew K Craft
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| | - Frank V Bright
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| |
Collapse
|
7
|
Destino JF, Jones ZR, Gatley CM, Zhang Y, Craft AK, Detty MR, Bright FV. Hybrid Sol-Gel-Derived Films That Spontaneously Form Complex Surface Topographies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10113-10119. [PMID: 27607195 DOI: 10.1021/acs.langmuir.6b02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 μm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.
Collapse
Affiliation(s)
- Joel F Destino
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Zachary R Jones
- Department of Chemistry, Ithaca College , Ithaca, New York 14850, United States
| | - Caitlyn M Gatley
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Yi Zhang
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Andrew K Craft
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Michael R Detty
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Frank V Bright
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
8
|
Damon CA, Gatley CM, Beres JJ, Finlay JA, Franco SC, Clare AS, Detty MR. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: in situ generation of hypohalous acids. BIOFOULING 2016; 32:883-896. [PMID: 27458654 DOI: 10.1080/08927014.2016.1203420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Mixed titania/silica xerogels were prepared using titanium tetraisopropoxide (TTIP) and tetraethoxy orthosilicate (TEOS). Xerogel properties were modified by incorporating n-octyltriethoxysilane (C8). The xerogels catalyze the oxidation of bromide and chloride with hydrogen peroxide (H2O2) to produce hypohalous acids at pH 7 and pH 8. The antifouling/ fouling-release performance of a TTIP/C8/TEOS xerogel in the presence and absence of H2O2 was evaluated for the settlement of zoospores of the marine alga Ulva linza and for the removal of sporelings (young plants). In the absence of H2O2, differences in the settlement of zoospores and removal of sporelings were not significant relative to a titanium-free C8/TEOS xerogel. Addition of H2O2 gave a significant reduction in zoospore settlement and sporeling removal relative to the C8/TEOS xerogel and relative to peroxide-free conditions. The impact of TTIP on xerogel characteristics was evaluated by comprehensive contact angle analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Corey A Damon
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Caitlyn M Gatley
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Joshua J Beres
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - John A Finlay
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Sofia C Franco
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Michael R Detty
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| |
Collapse
|
9
|
Gatley CM, Muller LM, Lang MA, Alberto EE, Detty MR. Xerogel-sequestered silanated organochalcogenide catalysts for bromination with hydrogen peroxide and sodium bromide. Molecules 2015; 20:9616-39. [PMID: 26016550 PMCID: PMC6272488 DOI: 10.3390/molecules20069616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 11/28/2022] Open
Abstract
While H2O2 is a powerful oxidant, decomposing into environmentally benign H2O and O2, a catalyst is often required for reactions with H2O2 to proceed at synthetically useful rates. Organotellurium and organoselenium compounds catalyze the oxidation of halide salts to hypohalous acids using H2O2. When sequestered into xerogel monoliths, the xerogel-chalcogenide combinations have demonstrated increased catalytic activity relative to the organochalcogen compound alone in solution for the oxidation of halide salts to hypohalous acids with H2O2. Diorganotellurides, diorganoselenides, and diorganodiselenides bearing triethoxysilane functionalities were sequestered into xerogel monoliths and their catalytic activity and longevity were investigated. The longevity of the catalyst-xerogel combinations was examined by isolating and recycling the catalyst-xerogel combination. It was found tellurium-containing catalyst 3 and selenium-containing catalyst 8 maintained their catalytic activity through three recycling trials and adding electron-donating substituents to catalyst 3 also increased the catalytic rate. The presence of organotellurium and organoselenium groups in the +4 oxidation state was determined by X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Caitlyn M Gatley
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Lisa M Muller
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Meredith A Lang
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Eduardo E Alberto
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Michael R Detty
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
|