1
|
Soldati KR, Jiang Y, Brandt BW, Exterkate RAM, Buijs MJ, Nazmi K, Kaman WE, Cheng L, Bikker FJ, Crielaard W, Zandim-Barcelos DL, Deng DM. Differential Modulation of Saliva-Derived Microcosm Biofilms by Antimicrobial Peptide LL-31 and D-LL-31. Pathogens 2023; 12:1295. [PMID: 38003760 PMCID: PMC10675243 DOI: 10.3390/pathogens12111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiome modulation, aiming to restore a health-compatible microbiota, is a novel strategy to treat periodontitis. This study evaluated the modulation effects of antimicrobial peptide LL-31 and its D-enantiomer (D-LL-31) on saliva-derived microcosm biofilms, spiked with or without Porphyromonas gingivalis. To this end, one-day-old biofilms were incubated for 24 h with biofilm medium alone, or medium containing 40 µM LL-31 or D-LL-31, after which biofilms were grown for 5 days. Biofilms were assessed at 1 day and 5 days after intervention for the total viable cell counts, dipeptidyl peptidase IV (DPP4) activity, P. gingivalis amount (by qPCR) and microbial composition (by sequencing). The results showed that D-LL-31, not LL-31, significantly reduced the total viable cell counts, the P. gingivalis amount, and the DPP4 activity of the biofilms spiked with P. gingivalis, but only at 1 day after intervention. In the biofilms spiked with P. gingivalis, D-LL-31 tended to reduce the α-diversity and the compositional shift of the biofilms in time as compared to the control and LL-31 groups. In conclusion, D-LL-31 showed a better performance than LL-31 in biofilm modulation. The biofilm modulation function of the peptides could be impaired when the biofilms were in a severely dysbiotic state.
Collapse
Affiliation(s)
- Kahena R. Soldati
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, Universidade Estadual Paulista—UNESP, Araraquara 1680, SP, Brazil;
| | - Yaling Jiang
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Rob A. M. Exterkate
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Wendy E. Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.N.); (W.E.K.); (F.J.B.)
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| | - Daniela L. Zandim-Barcelos
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, Universidade Estadual Paulista—UNESP, Araraquara 1680, SP, Brazil;
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (K.R.S.); (Y.J.); (B.W.B.); (R.A.M.E.); (M.J.B.); (W.C.)
| |
Collapse
|
2
|
Liu H, Huang L, Cai Y, Bikker FJ, Wei X, Mei Deng D. A novel gingipain regulatory gene in Porphyromonas gingivalis mediates host cell detachment and inhibition of wound closure. Microbiologyopen 2020; 9:e1128. [PMID: 33047890 PMCID: PMC7755767 DOI: 10.1002/mbo3.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022] Open
Abstract
The black pigmentation-related genes in Porphyromonas gingivalis are primarily involved in regulating gingipain functions. In this study, we identified a pigmentation-related gene, designated as pgn_0361. To characterize the role of pgn_0361 in regulating P. gingivalis-mediated epithelial cell detachment and inhibition of wound closure, PgΔ0361, an isogenic pgn_0361-defective mutant strain, and PgΔ0361C, a complementation strain, were constructed using P. gingivalis ATCC 33277. The gingipain and hemagglutination activities, as well as biofilm formation, were examined in all three strains. The effect of P. gingivalis strains on epithelial cell detachment was investigated using the HO-1-N-1 and Ca9-22 epithelial cell lines. The inhibition of wound closure by heat-killed P. gingivalis cells and culture supernatant was analyzed using an in vitro wound closure assay. Compared to the wild-type strain, the PgΔ0361 strain did not exhibit gingipain or hemagglutination activity but exhibited enhanced biofilm formation. Additionally, the PgΔ0361 strain exhibited attenuated ability to detach the epithelial cells and to inhibit wound closure in vitro. Contrastingly, the culture supernatant of PgΔ0361 exhibited high gingipain activity and strong inhibition of wound closure. The characteristics of PgΔ0361C and wild-type strains were comparable. In conclusion, the pgn_0361 gene is involved in regulating gingipains. The PGN_0361-defective strain exhibited reduced virulence in terms of epithelial cell detachment and inhibition of wound closure. The culture supernatant of the mutant strain highly inhibited wound closure, which may be due to high gingipain activity.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Dong Mei Deng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
3
|
Huang L, Zeng J, Bosch-Tijhof C, Ling J, Wei X, van Loveren C, Crielaard W, Deng DM. Effects of bacterial physiological states and bacterial species on host-microbe interactions. BIOFOULING 2018; 34:870-879. [PMID: 30326724 DOI: 10.1080/08927014.2018.1514026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
This study investigated how the physiological states of Aggregatibacter actinomycetemcomitans (Aa) and Streptococcus mitis affect their intracellular invasion capabilities and the resulting host cell responses. The physiological states included two forms of planktonic states, floating or sedimented (by centrifugation) and the biofilm state (with centrifugation). Confluent epithelial Ca9-22 cells were challenged with floating or sedimented planktonic cultures, or with 24-h biofilms for 3 h. The results show that intracellular invasion efficiencies were clearly affected by the bacterial physiological states. For both bacterial species, the sedimented-cells displayed 2-10 times higher invasion efficiency than the floating-cells (p < 0.05). The invasion efficiency of Aa biofilms was three fold lower than sedimented cells, whereas those of S. mitis biofilms were similar to sedimented cells. Unlike invasion, the metabolic activities of Ca9-22 were unaffected by different bacterial physiological states. However, Aa biofilms induced higher IL-1β expression than planktonic cultures. In conclusion, different bacterial physiological states can affect the outcomes of (in vitro) host-microbe interaction in different ways.
Collapse
Affiliation(s)
- Lijia Huang
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Jinfeng Zeng
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Caroline Bosch-Tijhof
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Junqi Ling
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Xi Wei
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Cor van Loveren
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Dong Mei Deng
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|