1
|
Bonyadi Manesh M, Vatankhah N, Bonyadi Manesh F. Comparison of Microbiota in Zirconia and Titanium Implants: A Qualitative Systematic Review. Int Dent J 2024:S0020-6539(24)01411-4. [PMID: 39237398 DOI: 10.1016/j.identj.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND In this systematic review, we examine the variations in microbiota on zirconia versus titanium implants, providing insights into their impact on dental health and outcomes. The ongoing discussion regarding whether to use zirconia or titanium for implants underscores the significance of microbiota colonization in determining the longevity and performance of implants. METHODS Research questions were formulated following the Participants, Intervention, Comparison, and Outcomes framework, and a PROSPERO protocol was registered. A thorough systematic search was carried out in PubMed, Embase, and Web of Science. Two reviewers independently assessed the reports against the Participants, Intervention, Comparison, and Outcomes criteria, including the inclusion and exclusion criteria. Risk of bias was assessed using the Quality Assessment Tool for In Vitro Studies (QUIN Tool). RESULTS Of the 2063 articles identified, 19 articles fulfilled the inclusion criteria and subjected to quality assessment. All of the included studies were in vitro research with low (31.5%) or moderate (36.8%) or high (31.5%) risk of bias and reported data from 2 implant abutments. Zirconia implants displayed a higher occurrence of Gram-negative bacteria, such as Tannerella, Aggregatibacter, and Porphyromonas. In contrast, titanium implants showed a greater prevalence of Gram-positive bacteria, including Streptococcus, Lactobacillus acidophilus, and Staphylococcus species. CONCLUSION According to the findings of the current study, both zirconia and titanium implants support the growth of different microorganisms. There were also differences in the quakity and the quantity of microorganisms detected on each material. These differences in microbial profiles indicate that the selection of implant material might impact the microbial ecosystem on the implant surface, potentially affecting clinical outcomes such as infection rates and the longevity of the implant.
Collapse
Affiliation(s)
- Majid Bonyadi Manesh
- Department of Oral and Maxillofacial Prosthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Vatankhah
- Department of Pharmaceutical, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Bonyadi Manesh
- Department of Restorative Dentistry and Endodontics, School of Dentistry, North Khorasan University of Medical Sciences, Bojnord, Iran
| |
Collapse
|
2
|
Banu Raza F, Vijayaragavalu S, Kandasamy R, Krishnaswami V, Kumar V A. Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies. J Oral Biol Craniofac Res 2023; 13:84-91. [PMID: 36504486 PMCID: PMC9730223 DOI: 10.1016/j.jobcr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crestal bone preservation around the dental implant for aesthetic and functional success is widely researched and documented over a decade. Several etiological factors were put forth for crestal bone loss; of which biofilm plays a major role. Biofilm is formed by the colonization of wide spectra of bacteria inhabited around dental implants. Bacterial adherence affects the regulators of bone growth and an early intervention preserves the peri-implant bone. Primary modes of therapy stated in early literature were either prevention or treatment of infection caused by biofilm. This narrative review overviews the microbiome during different stages of peri-implant health, the mechanism of bone destruction, and the expression of the biomarkers at each stage. Microbial contamination and the associated biomarkers varied depending on the stage of peri-implant infection. The comprehensive review helps in formulating a research plan, both in diagnostics and treatment aspects in improving peri-implant health.
Collapse
Key Words
- Antibiotics
- Biomarkers
- CD14, Cluster of Differentiation 14
- CSF, Colony-Stimulating Factor
- Gene expression
- IL, Interleukins
- MMP 8, Matrix MetalloProteinase 8
- Microbiota
- OPG, Osteoprotegerin
- PSMB 2, Proteasome subunit beta type-2
- Peri-implant
- RANK, Receptor Activator of Nuclear factor Kappa-Β
- RANKL, Receptor Activator of Nuclear factor Kappa-ΒLigand
- TIMP, Tissue inhibitor of Metalloproteinase
- TNF, Tumor Necrosis Factor
- TWEAK, TNF-related weak inducer of apoptosis
- VEGF, Vascular Endothelial Growth Factor
- sRANKL, soluble Receptor Activator of Nuclear Factor-κB Ligand
Collapse
Affiliation(s)
- Fathima Banu Raza
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Anand Kumar V
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
- Corresponding author. Department of Prosthodontics, Faculty of Dental Sciences, SRIHER (DU), Porur, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
4
|
Korsch M, Marten SM, Stoll D, Prechtl C, Dötsch A. Microbiological findings in early and late implant loss: an observational clinical case-controlled study. BMC Oral Health 2021; 21:112. [PMID: 33706748 PMCID: PMC7948356 DOI: 10.1186/s12903-021-01439-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background Implants are a predictable and well-established treatment method in dentistry. Nevertheless, looking at possible failures of dental implants, early and late loss have to be distinguished. The intent of the study was to report microbiological findings on the surface of implants with severe peri-implantitis, which had to be explanted. Methods 53 specimens of implants from 48 patients without severe general illnesses have been examined. The groups investigated were implants that had to be removed in the period of osseointegration (early loss, 13 patients with 14 implants) or after the healing period (late loss, 14 patients with 17 implants). The implant losses were compared with two control groups (implants with no bone loss directly after completed osseointegration, two to four months after implant placement (17 patients with 17 implants) and implants with no bone loss and prosthetic restoration for more than three years (5 patients with 5 implants)). Data about the bacteria located in the peri-implant sulcus was collected using amplification and high throughput sequencing of the 16S rRNA gene. Results The biofilm composition differed substantially between individuals. Both in early and late implant loss, Fusobacterium nucleatum and Porphyromonas gingivalis were found to be abundant. Late lost implants showed higher bacterial diversity and in addition higher abundances of Treponema, Fretibacterium, Pseudoramibacter and Desulfobulbus, while microbial communities of early loss implants were very heterogeneous and showed no significantly more abundant bacterial taxa. Conclusions Specific peri-implant pathogens were found around implants that were lost after a primarily uneventful osseointegration. P. gingivalis and F. nucleatum frequently colonized the implant in early and late losses and could therefore be characteristic for implant loss in general. In general, early lost implants showed also lower microbial diversity than late losses. However, the microbial results were not indicative of the causes of early and late losses.
Collapse
Affiliation(s)
- Michael Korsch
- Dental Academy for Continuing Professional Development, Karlsruhe, Lorenzstrasse 7, 76135, Karlsruhe, Germany. .,Center for Implantology and Oral Surgery, Berliner Straße 41, 69120, Heidelberg, Germany. .,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg, Germany.
| | - Silke-Mareike Marten
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dominic Stoll
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Christopher Prechtl
- Dental Academy for Continuing Professional Development, Karlsruhe, Lorenzstrasse 7, 76135, Karlsruhe, Germany.,Center for Implantology and Oral Surgery, Berliner Straße 41, 69120, Heidelberg, Germany
| | - Andreas Dötsch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| |
Collapse
|
5
|
Matthes de Freitas Pontes K, Fontenelle ISDO, Nascimento CD, Oliveira VDC, Albuquerque Garcia B, Silva PGDB, Henrique LDS, de Souza KM, Pontes CDB. Clinical study of the biofilm of implant-supported complete dentures in healthy patients. Gerodontology 2021; 39:148-160. [PMID: 33660315 DOI: 10.1111/ger.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to quantify the area covered by biofilm and identify bacteria and yeasts present in mandibular acrylic resin full-arch implant-supported fixed prostheses. BACKGROUND Biofilm control of implant-supported fixed prosthesis is hampered by their design, and it can cause oral and systemic problems, mainly in immunocompromised patients like the elder. Knowledge about microbiota reinforces the awareness about the need for periodic professional cleaning maintenance. MATERIALS AND METHODS Twenty prostheses were unscrewed, washed in 0.89% sodium chloride, stained with eosin 1% and photographed. The area covered by biofilm was digitally delimited and quantified. Biofilm samples were collected, diluted up to 1:107 , seeded in chromogenic agar media and incubated for 48 hours, at 37°C, for counting of colony-forming units (CFU/mL). DNA hybridization was performed to complement the identification and quantification of microorganisms. Data were analyzed using Mann-Whitney test, Spearman correlation and Fisher's exact test (α = .05). RESULTS An average of 62% of the gingival surface of the prostheses was covered by biofilm. Enterococcus spp. (5.82 ± 1.38 log10 CFU/mL) and Staphylococcus aureus (5.75 ± 2.02 log10 CFU/mL) showed higher prevalence in cultures. Patients with five implants had less biofilm compared to those with four implants (P = .031) but had higher Escherichia coli counts (P = .039). In DNA hybridization, Streptococcus pneumoniae, Veillonella parvula and Fusobacterium nucleatum presented higher quantification and were present in all the samples; patients over 65 years old contained more Candida tropicalis (P = .049); prostheses on five implants presented lower quantification for several species. CONCLUSION Biofilm was present on all prostheses, containing potentially pathogenic microorganisms. The number of implants may play a role in quantification of biofilm and in microorganism counts.
Collapse
Affiliation(s)
- Karina Matthes de Freitas Pontes
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Cássio do Nascimento
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Viviane de Cássia Oliveira
- School of Dentistry of Ribeirão Preto - Oral Rehabilitation Laboratory, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Hjerppe J, Rodas S, Korvala J, Pesonen P, Kaisanlahti A, Özcan M, Suojanen J, Reunanen J. Surface Roughness and Streptococcus mutans Adhesion on Metallic and Ceramic Fixed Prosthodontic Materials after Scaling. MATERIALS 2021; 14:ma14041027. [PMID: 33671563 PMCID: PMC7926524 DOI: 10.3390/ma14041027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the surface roughness of fixed prosthodontic materials after polishing or roughening with a stainless steel curette or ultrasonic scaler and to examine the effect of these on Streptococcus mutans adhesion and biofilm accumulation. Thirty specimens (10 × 10 × 3 mm3) of zirconia (Zr), pressed lithium disilicate (LDS-Press), milled lithium disilicate glazed (LDS-Glaze), titanium grade V (Ti) and cobalt-chromium (CoCr) were divided into three groups (n = 10) according to surface treatment: polished (C), roughened with stainless steel curette (SC), roughened with ultrasonic scaler (US). Surface roughness values (Sa, Sq) were measured with a spinning disc confocal microscope, and contact angles and surface free energy (SFE) were measured with a contact angle meter. The specimens were covered with sterilized human saliva and immersed into Streptococcus mutans suspensions for bacterial adhesion. The biofilm was allowed to form for 24 h. Sa values were in the range of 0.008–0.139 µm depending on the material and surface treatment. Curette and ultrasonic scaling increased the surface roughness in LDS-Glaze (p < 0.05), Ti (p < 0.01) and CoCr (p < 0.001), however, surface roughness did not affect bacterial adhesion. Zr C and US had a higher bacterial adhesion percentage compared to LDS-Glaze C and US (p = 0.03). There were no differences between study materials in terms of biofilm accumulation.
Collapse
Affiliation(s)
- Jenni Hjerppe
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland
- Correspondence: ; Tel.:+ 41-44-634-0404
| | - Sampo Rodas
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.R.); (J.K.); (A.K.); (J.R.)
| | - Johanna Korvala
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.R.); (J.K.); (A.K.); (J.R.)
| | - Paula Pesonen
- Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland;
| | - Anna Kaisanlahti
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.R.); (J.K.); (A.K.); (J.R.)
| | - Mutlu Özcan
- Center of Dental Medicine, Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, University of Zürich, 8032 Zürich, Switzerland;
| | - Juho Suojanen
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillo-facial Surgery, 15850 Lahti, Finland;
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.R.); (J.K.); (A.K.); (J.R.)
| |
Collapse
|
7
|
de Freitas AR, Del Rey YC, de Souza Santos E, Faria Ribeiro R, de Albuquerque Junior RF, do Nascimento C. Microbial communities of titanium versus zirconia abutments on implant-supported restorations: Biodiversity composition and its impact on clinical parameters over a 3-year longitudinal prospective study. Clin Implant Dent Relat Res 2021; 23:197-207. [PMID: 33543600 DOI: 10.1111/cid.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Shifts in microbial communities are common over time, but they may disturb the host-microbiome homeostasis and result in inflammation of the peri-implant issues if a dysbiotic biofilm is established. PURPOSE Considering that different oral substrate surfaces may have a relevant impact on the microbial adhesion and colonization, the aim of this study was to investigate the microbial communities of the biofilm formed on single-implant restorations using titanium or zirconia abutments and how they correlate with clinical parameters after 3-years of implant loading. MATERIALS AND METHODS MiSeq sequencing of 16S rRNA amplicons was used to characterize the oral biofilms of individuals (n = 20) who were sampled longitudinally during 3 years of masticatory loading. Bioinformatics analysis and multivariate statistical analysis were used to evaluate the microbial diversity and clinical outcomes. RESULTS Microbiomes of both abutment materials presented high alpha-diversity indices during all the experimental period, irrespective of the time of sampling. Microbial communities of titanium and zirconia were quite different over time, differing about 30% after 3 years of functional loading. Similarity of microbiomes between tested abutments and contralateral teeth was also low, ranging between 45% and 50% after 3 years of investigation. Periodontal pathogens commonly associated with peri-implantitis were found in both groups. Furthermore, both abutment materials presented strong correlations of diversity indices and microbial taxa with clinical outcomes. CONCLUSIONS The type of abutment substrate significantly influenced diversity and clustering of communities during 3 years of functional loading. The time of sampling had no effect on the variables. Large correlations were found between microbial findings and clinical outcomes.
Collapse
Affiliation(s)
- Alice Ramos de Freitas
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, Molecular Diagnosis Laboratory, Ribeirão Preto, SP, Brazil
| | - Yumi Chokyu Del Rey
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, Molecular Diagnosis Laboratory, Ribeirão Preto, SP, Brazil
| | - Emerson de Souza Santos
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Toxicological and Bromatologic Analysis, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Faria Ribeiro
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, Molecular Diagnosis Laboratory, Ribeirão Preto, SP, Brazil
| | - Rubens Ferreira de Albuquerque Junior
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, Molecular Diagnosis Laboratory, Ribeirão Preto, SP, Brazil
| | - Cássio do Nascimento
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, Molecular Diagnosis Laboratory, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020; 24:4237-4260. [PMID: 33111157 PMCID: PMC7666681 DOI: 10.1007/s00784-020-03646-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Ralf Helbig
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Takao HANAWA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
10
|
do Nascimento C, Nogueira Fernandes FHC, Teixeira W, Pedrazzi V. Iodoform and silver-coated abutments preventing bacterial leakage through the implant-abutment interfaces: In vitro analysis using molecular-based method. Arch Oral Biol 2019; 105:65-71. [PMID: 31276940 DOI: 10.1016/j.archoralbio.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this in vitro study was to evaluate the effectiveness of an iodoform paste and silver-coated abutments in preventing the microbial colonization and leakage through the implant-abutment interface of morse taper and internal hexagon implants. MATERIAL AND METHODS Seventy-two implants with morse taper (n = 36) or internal hexagon connections (n = 36) were investigated. Implants were treated with iodoform paste (n = 12), silver-coated abutments (n = 12), or control (n = 12). After saliva incubation, Checkerboard DNA-DNA hybridization was used to identify and quantify up to 43 microbial species colonizing the inner parts of the implants. ANOVA-Type and Wald-Type analyses of variance were used to investigate the relative effects and their interaction. Friedman- Conover test adjusted by Benjamini-Hockberg FDR were performed for pairwise multiple comparisons. Significance was set as p < 0.05. RESULTS Analyses of variance indicate a significant interaction between connections, antimicrobial treatments, and species. The frequency of contamination was reduced in the implants submitted to the antimicrobial treatments. Iodoform and silver-coated abutments significantly reduced the total microbial counts in the internal hexagon implants. The lower microbial counts were recorded for morse taper implants with silver-coated abutments. CONCLUSIONS Iodoform paste and silver-coated abutments have influenced the microbial leakage through the implant-abutment interface, by reducing both frequency of contamination and microbial levels. Treatments were not effective in reducing the counts of the target species.
Collapse
Affiliation(s)
- Cássio do Nascimento
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Wendel Teixeira
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | - Vinícius Pedrazzi
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
11
|
Hao Y, Huang X, Zhou X, Li M, Ren B, Peng X, Cheng L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int J Mol Sci 2018; 19:E3157. [PMID: 30322190 PMCID: PMC6213966 DOI: 10.3390/ijms19103157] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 01/17/2023] Open
Abstract
Oral biofilms attach onto both teeth surfaces and dental material surfaces in oral cavities. In the meantime, oral biofilms are not only the pathogenesis of dental caries and periodontitis, but also secondary caries and peri-implantitis, which would lead to the failure of clinical treatments. The material surfaces exposed to oral conditions can influence pellicle coating, initial bacterial adhesion, and biofilm formation, due to their specific physical and chemical characteristics. To define the effect of physical and chemical characteristics of dental prosthesis and restorative material on oral biofilms, we discuss resin-based composites, glass ionomer cements, amalgams, dental alloys, ceramic, and dental implant material surface properties. In conclusion, each particular chemical composition (organic matrix, inorganic filler, fluoride, and various metallic ions) can enhance or inhibit biofilm formation. Irregular topography and rough surfaces provide favorable interface for bacterial colonization, protecting bacteria against shear forces during their initial reversible binding and biofilm formation. Moreover, the surface free energy, hydrophobicity, and surface-coating techniques, also have a significant influence on oral biofilms. However, controversies still exist in the current research for the different methods and models applied. In addition, more in situ studies are needed to clarify the role and mechanism of each surface parameter on oral biofilm development.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| |
Collapse
|