1
|
Guillín Y, Ortiz C, Hidalgo W. Comparative metabolic study of planktonic and sessile cells in Salmonella Enteritidis ATCC 13076: Elucidating metabolic pathways driving biofilm formation. PLoS One 2025; 20:e0317420. [PMID: 39854347 PMCID: PMC11761094 DOI: 10.1371/journal.pone.0317420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach. The metabolites extracted from the bacterial cells were analyzed by LC/MS approach. Raw data were analyzed using Thermo Xcalibur v 3.1 software. For data processing, XCMS was used for feature detection, retention time, correction and alignment. The data matrix was analyzed by uni- and multivariate statistical methods (PCA, PLS-DA, Heatmap) in MetaboAnalyst software v 6.0. A total of 121 metabolites were presumptively identified as differential metabolic characteristics between the two bacterial states, and they were associated with their corresponding metabolic pathways. Among the metabolites that exhibited positive modulation in planktonic cells were proline, phenylalanine, which act as precursors of essential metabolites and part of the stress adaptation mechanisms. In addition, putrescine and cadaverine, play crucial roles in growth, stress response, and cell stability In contrast, the most representative metabolites in sessile cells included lysine, adenosine, purines, pyrimidines, and citrate, mainly associated with maintaining cellular homeostasis, stress response and metabolic regulation. Finally, pathway enrichment analysis identified metabolic changes in 11 pathways, predominantly involving purine and pyrimidine metabolism, arginine and proline metabolism, and vitamin B6 metabolism. These findings facilitated the identification of potential metabolic pathways associated with biofilm formation in the sessile cells of Salmonella Enteritidis.
Collapse
Affiliation(s)
- Yuliany Guillín
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Microbiología y Bioanálisis, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - William Hidalgo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
2
|
Hongchao D, Ma L, Xu Z, Soteyome T, Yuan L, Yang Z, Jiao XA. Invited review: Role of Bacillus licheniformis in the dairy industry- friends or foes? J Dairy Sci 2024:S0022-0302(24)00904-4. [PMID: 38851582 DOI: 10.3168/jds.2024-24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, final dairy products, and is found throughout the dairy processing continuum. Though being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis in combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by traditional cleaning and disinfection procedures. Despite the extensive efforts on the identification of B. licheniformis from various dairy samples, no reviews have been reported on both hazard and benefits of this spore-former. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and its potential prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry were also summarized.
Collapse
Affiliation(s)
- Dai Hongchao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| |
Collapse
|
3
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
4
|
Fan L, Dai H, Zhou W, Yuan L, Yang J, Yang Z, Jiao XA. Unraveling the significance of calcium as a biofilm promotion signal for Bacillus licheniformis strains isolated from dairy products. Food Res Int 2024; 182:114145. [PMID: 38519175 DOI: 10.1016/j.foodres.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.
Collapse
Affiliation(s)
- Luyao Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin, Heilongjiang 150030, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Jia Yang
- Yangzhou Institute for Food and Drug Control, Yangzhou, Jiangsu 225106, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
5
|
Zhang W, Qian L, He B, Gong X, Zhang G. Mechanism Insights of Antibacterial Surfaces Coated with Dead Probiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17632-17643. [PMID: 38033279 DOI: 10.1021/acs.langmuir.3c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
To understand the antimicrobial effect of surfaces fabricated with dead probiotics, we prepared surfaces decorated with dead probiotics Lactobacillus rhamnosus GG (LGG) with varied inactivation methods and explored their inhibitory interactions with Pseudomonas aeruginosa (PAO1). By combining several techniques, i.e., digital holographic microscopy (DHM), atomic force microscopy (AFM), RNA sequencing, and metabolomic analysis, we studied the three-dimensional (3D) swimming behaviors, surface adhesion, biofilm formation, and adaptive responses of PAO1 near such surfaces. The results show that planktonic PAO1 decreases their flick and reverse motions by downregulating the chemotaxis pathway and accelerates with less accumulation near dead LGG surfaces by upregulating the flagellar assembly pathway and decreasing cyclic adenosine monophosphate. Distinct from live siblings, the surfaces decorated with dead LGG show a significant reduction in adhesion strength with PAO1 and inhibit biofilm formation with more downregulated genes in the Pseudomonas quinolone signal and biofilm formation pathway. We demonstrate that the antibacterial ability of such surfaces stems from the gradually released lysate from the dead LGG that is unfavorable to PAO1 in close proximity. The releasing rate and order depend on the cell membrane integrity, which closely relates to the inactivation methods.
Collapse
Affiliation(s)
- Weixiong Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lu Qian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bingen He
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Xu T, Xiao Y, Wang H, Zhu J, Lu W, Chen W. Multiomics reveals the mechanism of B. longum in promoting the formation of mixed-species biofilms. Food Funct 2023; 14:8276-8290. [PMID: 37602484 DOI: 10.1039/d3fo01751f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
It has been found previously that Bifidobacterium longum, Bacteroides ovatus, Enterococcus faecalis, and Lactobacillus gasseri can form a biofilm better when co-cultured in vitro and B. longum is the core biofilm-formation-promoting strain in this community. B. longum is part of the core microbiota in the gut and is widely recognized as a probiotic. Therefore, it is necessary to explore its role in mixed-species biofilms through transcriptomics and metabolomics. Metabolomics showed that the increase in amino acid and purine content could promote biofilm formation. In transcriptomic analysis, many genes related to carbohydrate metabolism, amino acid metabolism, and environmental tolerance of B. longum were up-regulated. Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis, the differentially expressed genes (DEGs) of B. longum in mixed-species biofilms were mainly correlated to "quorum sensing (QS)", "ABC transporters", "biosynthesis of amino acids", "microbial metabolism in different environments", "carbohydrate metabolism" and "two-component system". In addition, the rpl and rps gene families, which function in the metabolism of organic substances and the biosynthesis of amino acids, were the core DEGs according to the analysis of the protein-protein interaction (PPI) network. Finally, by combining metabolomics and quorum sensing mechanisms, it was found that the metabolism of autoinducer peptides (proliylglycine and glycylleucine), N-acyl homoserine lactone (N-(3-oxo hydroxy) homoserine lactone), and AI-2 can promote the formation of biofilms, both mono- and mixed-species biofilms composed of B. longum. Our research enabled us to understand the critical role of B. longum in mixed-species biofilms and the interactions between biofilm metabolism and gut health. In addition, the generated knowledge will be of great significance for us to develop biofilm products with beneficial functions in future.
Collapse
Affiliation(s)
- Tao Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Sadiq FA, Wenwei L, Wei C, Jianxin Z, Zhang H. Transcriptional Changes in Bifidobacterium bifidum Involved in Synergistic Multispecies Biofilms. MICROBIAL ECOLOGY 2022; 84:922-934. [PMID: 34676439 DOI: 10.1007/s00248-021-01904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Bifidobacterium bifidum is part of the core microbiota of healthy infant guts where it may form biofilms on epithelial cells, mucosa, and food particles in the gut lumen. Little is known about transcriptional changes in B. bifidum engaged in synergistic multispecies biofilms with ecologically relevant species of the human gut. Recently, we reported prevalence of synergism in mixed-species biofilms formed by the human gut microbiota. This study represents a comparative gene expression analysis of B. bifidum when grown in a single-species biofilm and in two multispecies biofilm consortia with Bifidobacterium longum subsp. infantis, Bacteroides ovatus, and Parabacteroides distasonis in order to identify genes involved in this adaptive process in mixed biofilms and the influence on its metabolic and functional traits. Changes up to 58% and 43% in its genome were found when it grew in three- and four-species biofilm consortia, respectively. Upregulation of genes of B. bifidum involved in carbohydrate metabolism (particularly the galE gene), quorum sensing (luxS and pfs), and amino acid metabolism (especially branched chain amino acids) in both multispecies biofilms, compared to single-species biofilms, suggest that they may be contributing factors for the observed synergistic biofilm production when B. bifidum coexists with other species in a biofilm.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lu Wenwei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chen Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Zhao Jianxin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf 2022; 21:3346-3375. [PMID: 35762651 DOI: 10.1111/1541-4337.12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023]
Abstract
Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Fu J, Liu C, Li L, Liu J, Tie Y, Wen X, Zhao Q, Qiao Z, An Z, Zheng J. Adaptive response and tolerance to weak acids in
Saccharomyces cerevisiae boulardii
: a metabolomics approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Fu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Chaolan Liu
- Antibiotics Research and Re‐evalution Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 China
| | - Li Li
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Jun Liu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Yu Tie
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- Solid‐State Fermentation Resource Utilisation Key Laboratory of Sichuan Province Yibin 644000 China
| | - Xueping Wen
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Qikai Zhao
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- HengfengHuaBang Biological Science and Technology Co., Ltd. Leshan 614000 China
| | | | - Zheming An
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| | - Jia Zheng
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| |
Collapse
|
10
|
Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Shen Q, Zhang R. Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:64-72. [PMID: 34698535 DOI: 10.1094/mpmi-09-21-0234-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Probiotic Bacillus colonization of plant root surfaces has been reported to improve its beneficial effect. Chemotaxis, adhesion, aggregation, and biofilm formation are the four steps of root colonization by plant growth-promoting rhizobacteria (PGPRs). Compared with the other three well-studied processes, adhesion of PGPRs is less known. In this study, using mutant strains deleted for potential adhesin genes in PGPR strain Bacillus velezensis SQR9, adherence to both cucumber root surface and abiotic surface by those strains was evaluated. Results showed that deletion mutations ΔlytB, ΔV529_10500, ΔfliD, ΔyhaN, and ΔsacB reduced the adhesion to root surfaces, while, among them, only ΔfliD had significant defects in adhesion to abiotic surfaces (glass and polystyrene). In addition, B. velevzensis SQR9 mutants defective in adhesion to root surfaces showed a deficiency in rhizosphere colonization. Among the encoded proteins, FliD and YhaN played vital roles in root adhesion. This research systematically explored the potential adhesins in a well-studied PGPR strain and also indicated that adhesion progress was required for root colonization, which will help to enhance rhizosphere colonization and beneficial function of PGPRs in agricultural production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
11
|
Wang N, Jin Y, He G, Yuan L. Development of multi-species biofilm formed by thermophilic bacteria on stainless steel immerged in skimmed milk. Food Res Int 2021; 150:110754. [PMID: 34865772 DOI: 10.1016/j.foodres.2021.110754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 11/26/2022]
Abstract
Thermophilic bacteria, such as Bacillus licheniformis, Geobacillus stearothermophilus, Bacillus Subtilis and Anoxybacillus flavithermus, are detected frequently in milk powder products. Biofilms of those strains act as a major contamination to milk powder manufactures and pose potential risks in food safety. In this study, we explored the developing process of multi-species biofilm formed by the four thermophilic bacteria on stainless steel immerged in skimmed milk. The results showed that the thermophilic strains possessed strong capacities to decompose proteins and lactose in skimmed milk, and the spoilage effects were superimposed from multiple strains. B. licheniformis was the most predominant species in the mixed-species biofilm after 12-h incubation. From 24 h to 48 h, G. stearothermophilus occupied the highest proportion. Within the multi-species biofilm, competitive relation existed between B. licheniformis and G. stearothermophilus, while synergistic impacts were observed between B. licheniformis and A. flavithermus. The interspecies mutual influences on biofilm development provided important evidences for understanding colonization of the predominant thermophilic bacteria during milk powder processing.
Collapse
Affiliation(s)
- Ni Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
12
|
Wang D, Flint SH, Gagic D, Palmer JS, Fletcher GC, On SLW. In silico analysis revealing CsrA roles in motility-sessility switching and tuning VBNC cells in Vibrio parahaemolyticus. BIOFOULING 2021; 37:680-688. [PMID: 34369215 DOI: 10.1080/08927014.2021.1955357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
13
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Chen X, Hu Y, Tian S, Han B. Understanding the Interactions between Staphylococcus aureus and the Raw-Meat-Processing Environment Isolate Klebsiella oxytoca in Dual-Species Biofilms via Discovering an Altered Metabolic Profile. Microorganisms 2021; 9:microorganisms9040672. [PMID: 33805148 PMCID: PMC8064066 DOI: 10.3390/microorganisms9040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
In a raw-meat-processing environment, members of the Enterobacteriaceae family can coexist with Staphylococcus aureus to form dual-species biofilms, leading to a higher risk of food contamination. However, very little is known about the effect of inter-species interactions on dual-species biofilm formation. The aim of this study was to investigate the interactions between S. aureus and raw-meat-processing environment isolates of Klebsiella oxytoca in dual-species biofilms, by employing an untargeted metabolomics tool. Crystal violet staining assay showed that the biomass of the dual-species biofilm significantly increased and reached its maximum after incubation for 21 h, compared with that of single species grown alone. The number of K. oxytoca in the dual-species biofilm was significantly higher than that of S. aureus. Field emission scanning electron microscopy (FESEM) revealed that both species were evenly distributed, and were tightly wrapped by extracellular polymeric substances in the dual-species biofilms. Ultra-high-pressure liquid chromatography equipped with a quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF MS) analysis exhibited a total of 8184 positive ions, and 6294 negative ions were obtained from all test samples. Multivariate data analysis further described altered metabolic profiling between mono- and dual-species biofilms. Further, 18 and 21 different metabolites in the dual-species biofilm were screened as biomarkers by comparing the mono-species biofilms of S. aureus and K. oxytoca, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were exclusively upregulated in the dual-species biofilm included ABC transporters, amino acid metabolism, and the two-component signal transduction system. Our results contribute to a better understanding of the interactive behavior of inter-species biofilm communities, by discovering altered metabolic profiling.
Collapse
|
15
|
Wang N, Gao J, Yuan L, Jin Y, He G. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder. Int J Food Microbiol 2020; 337:108939. [PMID: 33160113 DOI: 10.1016/j.ijfoodmicro.2020.108939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Bacillus licheniformis is a major source of microbial contamination to dairy industry, and biofilm formation by this spoilage bacterium aggravates the safety issues. Especially for milk powder manufactures, the evaporation process at temperatures between 50 °C and 70 °C before spray drying, is a critical control point against thermophilic bacteria multiplication. In our study, metabolomics analysis was performed to investigate dynamic changes of the metabolites and their roles during process of biofilm development of B. licheniformis at 55 °C for 24 h. Amino acid metabolism was quite active, with cooperation from lipid metabolism, carbohydrate metabolism and nucleotide metabolism. Amino acid biosynthesis provided significant contributions especially during early biofilm development from 8 to 12 h. Metabolites involved in specific pathways of arginine biosynthetic, galactose metabolism and sphingolipid metabolism played a crucial role in building biofilm. This work provided new insights into dynamic metabolic alternations and a comprehensive network during B. licheniformis biofilm development, which will extend the knowledge on the metabolic process of biofilm formation by B. licheniformis. The results are helpful in creating better environmental hygiene in dairy processing and new strategies for ensuring quality of dairy products.
Collapse
Affiliation(s)
- Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Gao
- College of Food Science and Technology, Hebei Agriculture University, Baoding 071000, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Yan J, Xie J. Comparative Proteome Analysis of Shewanella putrefaciens WS13 Mature Biofilm Under Cold Stress. Front Microbiol 2020; 11:1225. [PMID: 32582122 PMCID: PMC7296144 DOI: 10.3389/fmicb.2020.01225] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, Shewanella putrefaciens is the predominant seafood spoilage microorganism during cold storage. This bacterium can attach to biotic/abiotic surfaces to form biofilms which contribute to seafood quality degradation and shelf-life reduction. The mechanism of S. putrefaciens biofilm formation is not yet described. Crystal violet staining in combination with confocal laser scanning microscopy (CLSM) was used to study the sequence of events leading to the establishment of a mature biofilm at 4, 15, and 30°C. In addition, the main chemical constituents of the mature biofilm were determined by Raman spectroscopy (RM), whereas, comparative proteomic analysis was used to quantify changes in metabolic pathways and to find out underlying protein determinants. The physical dimensions of the mature biofilm, i.e., biomass, biovolume, and mean thickness, were higher at 4°C when compared to 15 and 30°C. The variations of proteins measured by RM confirmed the importance of proteins during the formation of a mature biofilm. Comparative proteomic analysis showed that siderophore and iron chelate transport proteins were down-regulated during mature biofilm formation. The down-regulated aforementioned proteins are involved in promoting iron storage in response to a higher demand for metabolic energy, whereas, the upregulated proteins of the sulfur relay system, pyrimidine metabolism, and purine metabolism are related to bacterial adaptability. Synthesis of proteins related to cold stress was increased and proteins involved in aminoacyl-tRNA biosynthesis were up-regulated, whereas, proteins involved in aminopeptidase activity were down-regulated. Proteolysis to scavenge energy was reduced as proteins involved in pyrophosphatase activity were up-regulated. Also extracellular eDNA was found which may play an important role in maintaining the stability of mature S. putrefaciens biofilm structures under cold stress. This work provides a better understanding of the role of proteins in mature biofilms. In addition, the biofilm formation mechanism of a psychrotrophic spoilage bacterial species at low temperature is explored, which may contribute to generating biofilm controlling strategies during seafood preservation and processing.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
Sadiq FA, Yan B, Zhao J, Zhang H, Chen W. Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108772] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|