1
|
Gayatri M, Jothipandiyan S, Azeez MKA, Sudharsan M, Suresh D, Nithyanand P. Novel thiazolinyl-picolinamide-based palladium(II) complex extenuates the virulence and biofilms of vulvovaginal candidiasis (VVC) causing Candida. Int Microbiol 2024; 27:1527-1539. [PMID: 38467906 DOI: 10.1007/s10123-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Candida infections are growing all over the world as a result of their resistance to anti-fungal drugs. This raises concerns about public health, particularly in cases of vulvovaginal candidiasis (VVC). Therefore, the need for effective treatment options for Candida infections has become crucial. The main goal of the study is to evaluate the efficacy of novel palladium metal complexes against fluconazole-resistant Candida spp., particularly C. albicans and C. auris. The process begins with identifying the minimum inhibitory concentration (MIC), followed by growth curve assays, colony morphology analysis, characterization, and gene expression analysis. The investigation revealed that sub-MIC of Pd(II) complex B (250 μg/mL) inhibited Candida spp. more effectively than amphotericin B (500 μg/mL). Further, Pd(II) complex B drastically reduced the growth of Candida spp. biofilms by 70-80% for nascent biofilms and 70-75% for mature biofilms. Additionally, the yeast-to-hyphal switch and SEM studies revealed that Pd(II) complex B effectively hinders the growth of drug-resistant Candida cells. The gene expression investigation also evidenced that Pd(II) complex B downregulated virulence genes in C. albicans (ERG, EFG, UME6, and HGC) and C. auris (ERG, CDR, and HGC). The findings showed that Pd(II) complex B effectively inhibited the growth of Candida biofilm formation and was reported as a potential anti-biofilm agent against Candida spp. that are resistant to drugs.
Collapse
Affiliation(s)
- Munieswaran Gayatri
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Mohamed Khalid Abdul Azeez
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Murugesan Sudharsan
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Devarajan Suresh
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
2
|
The Bovhyaluronidase Azoximer (Longidaza ®) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121710. [PMID: 36556912 PMCID: PMC9782602 DOI: 10.3390/medicina58121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal−bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical isolates by 30−60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30−40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals.
Collapse
|
3
|
Marine Compounds with Anti-Candida sp. Activity: A Promised “Land” for New Antifungals. J Fungi (Basel) 2022; 8:jof8070669. [PMID: 35887426 PMCID: PMC9320905 DOI: 10.3390/jof8070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is still the major yeast causing human fungal infections. Nevertheless, in the last decades, non-Candida albicans Candida species (NCACs) (e.g., Candida glabrata, Candida tropicalis, and Candida parapsilosis) have been increasingly linked to Candida sp. infections, mainly in immunocompromised and hospitalized patients. The escalade of antifungal resistance among Candida sp. demands broadly effective and cost-efficient therapeutic strategies to treat candidiasis. Marine environments have shown to be a rich source of a plethora of natural compounds with substantial antimicrobial bioactivities, even against resistant pathogens, such as Candida sp. This short review intends to briefly summarize the most recent marine compounds that have evidenced anti-Candida sp. activity. Here, we show that the number of compounds discovered in the last years with antifungal activity is growing. These drugs have a good potential to be used for the treatment of candidiasis, but disappointedly the reports have devoted a high focus on C. albicans, neglecting the NCACs, highlighting the need to perform outspreading studies in the near future.
Collapse
|
4
|
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030390. [PMID: 35326853 PMCID: PMC8944833 DOI: 10.3390/antibiotics11030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases caused by bacteria represent a global threat to human health. However, due to the abuse of antibiotics, drug-resistant bacteria have evolved rapidly and led to the failure of antibiotics treatment. Alternative antimicrobial strategies different to traditional antibiotics are urgently needed. Enzyme-based antibacterials (Enzybiotics) have gradually attracted interest owing to their advantages including high specificity, rapid mode-of-action, no resistance development, etc. However, due to their low stability, potential immunogenicity, and high cost of natural enzymes, enzybiotics have limitations in practical antibacterial therapy. In recent years, many nanomaterials with enzyme-like activities (Nanozymes) have been discovered as a new generation of artificial enzymes and perform catalytic antibacterial effects against bacterial resistance. To highlight the progress in this field of nanozyme-based antibacterials (Nanozybiotics), this review discussed the antibacterial mechanism of action of nanozybiotics with a comparison with enzybiotics. We propose that nanozybiotics may bear promising applications in antibacterial therapy, due to their high stability, rapid bacterial killing, biofilm elimination, and low cost.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
5
|
Abstract
Biofilms are recalcitrant to antimicrobials, partly due to the barrier effect of their matrix. The use of hydrolytic enzymes capable to degrade matrix constituents has been proposed as an alternative strategy against biofilm-related infections. This study aimed to determine whether hydrolytic enzymes could potentiate the activity of antimicrobials against hard-to-treat interkingdom biofilms comprising two bacteria and one fungus. We studied the activity of a series of enzymes alone or in combination, followed or not by antimicrobial treatment, against single-, dual- or three-species biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans, by measuring their residual biomass or culturable cells. Two hydrolytic enzymes, subtilisin A and lyticase, were identified as the most effective to reduce the biomass of C. albicans biofilm. When targeting interkingdom biofilms, subtilisin A alone was the most effective enzyme to reduce biomass of all biofilms, followed by lyticase combined with an enzymatic cocktail composed of cellulase, denarase, and dispersin B that proved previously active against bacterial biofilms. The subsequent incubation with antimicrobials further reduced the biomass. Enzymes alone did not reduce culturable cells in most cases and did not interfere with the cidal effects of antimicrobials. Therefore, this work highlights the potential interest of pre-exposing interkingdom biofilms to hydrolytic enzymes to reduce their biomass besides the number of culturable cells, which was not achieved when using antimicrobials alone. IMPORTANCE Biofilms are recalcitrant to antimicrobial treatments. This problem is even more critical when dealing with polymicrobial, interkingdom biofilms, including both bacteria and fungi, as these microorganisms cooperate to strengthen the biofilm and produce a complex matrix. Here, we demonstrate that the protease subtilisin A used alone, or a cocktail containing lyticase, cellulase, denarase, and dispersin B markedly reduce the biomass of interkingdom biofilms and cooperate with antimicrobials to act upon these recalcitrant forms of infection. This work may open perspectives for the development of novel adjuvant therapies against biofilm-related infections.
Collapse
|
6
|
Jothipandiyan S, Suresh D, Sankaran SV, Thamotharan S, Shanmugasundaram K, Vincent P, Sekaran S, Gowrishankar S, Pandian SK, Paramasivam N. Heteroleptic pincer palladium(II) complex coated orthopedic implants impede the AbaI/AbaR quorum sensing system and biofilm development by Acinetobacter baumannii. BIOFOULING 2022; 38:55-70. [PMID: 34961388 DOI: 10.1080/08927014.2021.2015336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Implant-associated infections mediated by Acinetobacter baumannii biofilms have become a major concern in the healthcare sector. As biofilm formation by this important pathogen is mediated by quorum sensing, quorum sensing inhibitors (QSI) have gained much attention. The present study confirms that novel thiazolinyl-picolinamide based palladium(II) complexes had good biofilm disruptive and QSI properties against A. baumannii. Key QS-mediated virulence factors like pili mediated surface motility and polysaccharide production were inhibited by the best Pd(II) complex (E). This also showed potent inhibitory activity against both the standard and clinical strains of A. baumannii. Molecular docking analysis also proved the potent binding affinity of Pd(II)-E with the virulence targets. The Pd(II) complex also disrupted preformed biofilms and down-regulated the expression of QS mediated virulence genes in the biofilms established on implant material (titanium plates). As a whole, the present study showed that the novel thiazolinyl-picolinamide based Pd(II) complexes offer a promising anti-infective strategy to combat biofilm-mediated implant infections.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sankaran Venkatachalam Sankaran
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Preethi Vincent
- Bone Biology and Repair laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Saravanan Sekaran
- Bone Biology and Repair laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental college and hospitals, Saveetha institute for medical and Technical sciences, Saveetha University, Chennai, India
| | | | | | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Senthilganesh J, Kuppusamy S, Durairajan R, Subramanian S, Veerappan A, Paramasivam N. Phytolectin nanoconjugates in combination with standard antifungals curb multi-species biofilms and virulence of Vulvovaginal Candidiasis (VVC) causing Candida albicans and Non albicans Candida. Med Mycol 2021; 60:6484805. [PMID: 34958385 DOI: 10.1093/mmy/myab083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Vulvovaginal Candidiasis (VVC) is commonly occurring yeast infection caused by Candida species in women. Among Candida species, C. albicans is the predominant member that causes vaginal candidiasis followed by Candida glabrata. Biofilm formation by Candida albicans on the vaginal mucosal tissue leads to VVC infection and is one of the factors for a commensal organism to get into virulent form leading to disease. In addition to that, morphological switching from yeast to hyphal form increases the risk of pathogenesis as it aids in tissue invasion. In this study, jacalin, a phyto-lectin complexed Copper sulfide nanoparticles (NPs) have been explored to eradicate the mono and mixed species biofilms formed by fluconazole resistant C. albicans and C. glabrata isolated from VVC patients. NPs along with standard antifungals like micafungin and amphotericin B have been evaluated to explore interaction behaviour and we observed synergistic interactions between them. Microscopic techniques like light microscopy, phase contrast microscopy, scanning electron microscopy, confocal laser scanning microscopy were used to visualize the inhibition of biofilm by NPs and in synergistic combinations with standard antifungals. Real time PCR analysis was carried out to study the expression pattern of the highly virulent genes which are responsible for yeast to hyphal switch, drug resistance and biofilm formation upon treatment with NPs in combination with standard antifungals. The current study shows that lectin conjugated NPs with standard antifungals might be a different means to disrupt the mixed species population of Candida spp. that causes VVC.
Collapse
Affiliation(s)
- Jayasankari Senthilganesh
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Shruthi Kuppusamy
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Rubini Durairajan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sivabala Subramanian
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Anbazhagan Veerappan
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| |
Collapse
|
8
|
Jothi R, Sangavi R, Kumar P, Pandian SK, Gowrishankar S. Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes. Sci Rep 2021; 11:21049. [PMID: 34702898 PMCID: PMC8548306 DOI: 10.1038/s41598-021-00485-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The present study was deliberately focused to explore the antivirulence efficacy of a plant allelochemical-catechol against Candida albicans, and attempts were made to elucidate the underlying mechanisms as well. Catechol at its sub-MIC concentrations (2-256 μg/mL) exhibited a dose dependent biofilm as well as hyphal inhibitory efficacies, which were ascertained through both light and fluorescence microscopic analyses. Further, sub-MICs of catechol displayed remarkable antivirulence efficacy, as it substantially inhibited C. albicans' virulence enzymes i.e. secreted hydrolases. Notably, FTIR analysis divulged the potency of catechol in effective loosening of C. albicans' exopolymeric matrix, which was further reinforced using EPS quantification assay. Although, catechol at BIC (256 μg/mL) did not disrupt the mature biofilms of C. albicans, their initial adherence was significantly impeded by reducing their hydrophobic nature. Besides, FTIR analysis also unveiled the ability of catechol in enhancing the production of farnesol-a metabolite of C. albicans, whose accumulation naturally blocks yeast-hyphal transition. The qPCR data showed significant down-regulation of candidate genes viz., RAS1, HWP1 and ALS3 which are the key targets of Ras-cAMP-PKA pathway -the pathway that contribute for C. albicans' pathogenesis. Interestingly, the up-regulation of TUP1 (a gene responsible for farnesol-mediated hyphal inhibition) during catechol exposure strengthen the speculation of catechol triggered farnesol-mediated hyphal inhibition. Furthermore, catechol profusely enhanced the fungicidal efficacy of certain known antifungal agent's viz., azoles (ketoconazole and miconazole) and polyenes (amphotericin-B and nystatin).
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
9
|
Biosurfactant synergized with marine bacterial DNase disrupts polymicrobial biofilms. Folia Microbiol (Praha) 2021; 66:831-842. [PMID: 34169451 DOI: 10.1007/s12223-021-00876-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Globally, the occurrence of biofilm associated infection has become an alarming menace to the medical fraternity because the thick exopolysaccharide layer encasing the biofilms makes the biofilm producing pathogens inherently resistant to antibiotics. Candida albicans, the most common pathogen among Candida spp. is the causative agent for superficial and invasive candidiasis. The morphological phase switching from yeast to hyphal form is one of the virulent traits of C. albicans critical for its pathogenicity. Owing to the emergence of antifungal resistance among this opportunistic fungus, there is a dire need for improvised alternative antifungal agents. In the present study, we have evaluated a biosurfactant from a marine bacterium for its biofilm disruption ability against C. albicans. This biosurfactant had the potential to disrupt biofilms as well as to inhibit the morphological transition from yeast to hyphae. In addition, this biosurfactant showed enhance disruption of mixed species biofilms of C. albicans and Staphylococcus epidermidis when combined with DNase isolated from marine bacteria. From the results obtained, it is evident that the biosurfactant could act as a potential antibiofilm agent against drug resistant C. albicans strains.
Collapse
|
10
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|