1
|
Ding J, Wang X, Liu W, Ding C, Wu J, He R, Zhang X. Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400862. [PMID: 38408138 PMCID: PMC11077648 DOI: 10.1002/advs.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Hematoma, a risk factor of implant-associated infections (IAIs), creates a Fe-rich environment following implantation, which proliferates the growth of pathogenic bacteria. Fe metabolism is a major vulnerability for pathogens and is crucial for several fundamental physiological processes. Herein, a deferiprone (DFP)-loaded layered double hydroxide (LDH)-based nanomedicine (DFP@Ga-LDH) that targets the Fe-rich environments of IAIs is reported. In response to acidic changes at the infection site, DFP@Ga-LDH systematically interferes with bacterial Fe metabolism via the substitution of Ga3+ and Fe scavenging by DFP. DFP@Ga-LDH effectively reverses the Fe/Ga ratio in Pseudomonas aeruginosa, causing comprehensive interference in various Fe-associated targets, including transcription and substance metabolism. In addition to its favorable antibacterial properties, DFP@Ga-LDH functions as a nano-adjuvant capable of delaying the emergence of antibiotic resistance. Accordingly, DFP@Ga-LDH is loaded with a siderophore antibiotic (cefiderocol, Cefi) to achieve the antibacterial nanodrug DFP@Ga-LDH-Cefi. Antimicrobial and biosafety efficacies of DFP@Ga-LDH-Cefi are validated using ex vivo human skin and mouse IAI models. The pivotal role of the hematoma-created Fe-rich environment of IAIs is highlighted, and a nanoplatform that efficiently interferes with bacterial Fe metabolism is developed. The findings of the study provide promising guidance for future research on the exploration of nano-adjuvants as antibacterial agents.
Collapse
Affiliation(s)
- Jianing Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xin Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Wei Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Cheng Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
2
|
Guedes GMDM, Freitas AS, Pinheiro RM, Pereira VC, Melgarejo CMA, de Araujo ES, Ribeiro KVC, Bandeira SP, Cordeiro RDA, Rocha MFG, Sidrim JJC, Castelo-Branco DDSCM. Antibiofilm activity of promethazine, deferiprone, and Manuka honey in an ex vivo wound model. Lett Appl Microbiol 2023; 76:ovad119. [PMID: 37791895 DOI: 10.1093/lambio/ovad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rodrigo Machado Pinheiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Emanuela Silva de Araujo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Késia Veras Costa Ribeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Avenida Dr. Silas Munguba, 1700 - Itaperi - CEP 60714-903, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|