1
|
Wang S, Mo L, Wu B, Ma C, Wang H. Effect of structural stability of lipase in acetonitrile on its catalytic activity in EGCG esterification reaction: FTIR and MD simulation. Int J Biol Macromol 2024; 255:128266. [PMID: 37984584 DOI: 10.1016/j.ijbiomac.2023.128266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In this study, (-)-Epigallocatechin-3-O-gallate (EGCG) esterification reaction was catalyzed by Novozym 435, Lipozyme RM, Lipozyme TLIM, and lipase Amano 30SD in acetonitrile. Fourier transform infrared spectroscopy (FTIR) and molecular dynamic (MD) simulations were used to analyze the structural stability of different lipases in acetonitrile and their effect on EGCG esterification reaction. The results showed that conversion rate of EGCG catalyzed by Lipozyme RM was the highest, followed by Lipozyme TLIM. FTIR indicated that the secondary structure of Lipozyme RM was the most stable. MD simulations suggested that whole structural stability of Lipozyme RM in acetonitrile was superior to Novozym 435 and lipase Amano 30SD and similar to Lipozyme TLIM due to their similar conformation, while the active site of Lipozyme RM is more flexible than that of Lipozyme TLIM, which indicated that lipase with stable whole structure and flexible active site may be more conducive to the esterification of EGCG in acetonitrile. This study provided a direction for rapidly screening lipase to synthetize EGCG or other polyphenols esterified derivatives.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ling Mo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guilin Medical University, No.1 Zhiyuan Road, Lingui District, Guilin City, Guangxi 541004, China
| | - Beiqi Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyang Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Pirozzi D, Latte A, Sannino F. Immobilization of Lipases on Chitosan Hydrogels Improves Their Stability in the Presence of the Products of Triglyceride Oxidation. Gels 2023; 9:776. [PMID: 37888350 PMCID: PMC10606435 DOI: 10.3390/gels9100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
A significant bottleneck for the industrial application of lipases stems from their poor stability in the presence of commercial triglycerides. This is mainly due to the inactivating effect of the products of triglyceride oxidation (PTO), which are usually produced when oils and fats, being imported from far countries, are stored for long periods. In this study, the immobilization of a lipase from Candida rugosa on chitosan hydrogels has been carried out following two alternative approaches based on the enzyme adsorption and entrapment to increase the lipase stability under the operating conditions that are typical of oleochemical transformations. The effect of model compounds representing different classes of PTO on a lipase has been studied to optimize the enzyme immobilization method. Particular attention has been devoted to the characterization of the inactivating effect of PTO in nonaqueous media, which are adopted for most industrial applications of lipases.
Collapse
Affiliation(s)
- Domenico Pirozzi
- Laboratory of Biochemical Engineering, Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (D.P.); (A.L.)
| | - Alessandro Latte
- Laboratory of Biochemical Engineering, Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (D.P.); (A.L.)
| | - Filomena Sannino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055 Naples, Italy
| |
Collapse
|
3
|
Mateos PS, Casella ML, Briand LE, Matkovic SR. Transesterification of waste cooking oil with a commercial liquid biocatalyst: Key information revised and new insights. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Paula S. Mateos
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco” CINDECA, CCT La Plata‐CONICET UNLP Buenos Aires Argentina
| | - Mónica L. Casella
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco” CINDECA, CCT La Plata‐CONICET UNLP Buenos Aires Argentina
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco” CINDECA, CCT La Plata‐CONICET UNLP Buenos Aires Argentina
| | - Silvana R. Matkovic
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr Jorge J. Ronco” CINDECA, CCT La Plata‐CONICET UNLP Buenos Aires Argentina
| |
Collapse
|
4
|
Protein engineering to improve the stability of Thermomyces lanuginosus lipase in methanol. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Azevedo TSM, Silva LKB, Lima ÁS, Pereira MM, Franceschi E, Faria Soares CM. In Silico Evaluation of Enzymatic Tunnels in the Biotransformation of α-Tocopherol Esters. Front Bioeng Biotechnol 2022; 9:805059. [PMID: 35127674 PMCID: PMC8814584 DOI: 10.3389/fbioe.2021.805059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation: α-Tocopherol is a molecule obtained primarily from plant sources that are important for the pharmaceutical and cosmetics industry. However, this component has some limitations such as sensitivity to oxygen, presence of light, and high temperatures. For this molecule to become more widely used, it is important to carry out a structural modification so that there is better stability and thus it can carry out its activities. To carry out this structural modification, some modifications are carried out, including the application of biotransformation using enzymes as biocatalysts. Thus, the application of a computational tool that helps in understanding the transport mechanisms of molecules in the tunnels present in the enzymatic structures is of fundamental importance because it promotes a computational screening facilitating bench applications. Objective: The aim of this work was to perform a computational analysis of the biotransformation of α-tocopherol into tocopherol esters, observing the tunnels present in the enzymatic structures as well as the energies which correspond to the transport of molecules. Method: To carry out this work, 9 lipases from different organisms were selected; their structures were analyzed by identifying the tunnels (quantity, conformation, and possibility of transport) and later the calculations of substrate transport for the biotransformation reaction in the identified tunnels were carried out. Additionally, the transport of the product obtained in the reaction through the tunnels was also carried out. Results: In this work, the quantity of existing tunnels in the morphological conformational characteristics in the lipases was verified. Thus, the enzymes with fewer tunnels were RML (3 tunnels), LBC and RNL (4 tunnels), PBLL (5 tunnels), CALB (6 tunnels), HLG (7 tunnels), and LCR and LTL (8 tunnels) and followed by the enzyme LPP with the largest number of tunnels (39 tunnels). However, the enzyme that was most likely to transport substrates in terms of α-tocopherol biotransformation (in relation to the Emax and Ea energies of ligands and products) was CALB, as it obtains conformational and transport characteristics of molecules with a particularity. The most conditions of transport analysis were α-tocopherol tunnel 3 (Emax: −4.6 kcal/mol; Ea: 1.1 kcal/mol), vinyl acetate tunnel 1 (Emax: −2.4 kcal/mol; Ea: 0.1 kcal/mol), and tocopherol acetate tunnel 2 (Emax: −3.7 kcal/mol; Ea: 2 kcal/mol).
Collapse
Affiliation(s)
- Tamara Stela Mendonça Azevedo
- Graduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Brazil
- Institute of Technology and Research (ITP), Aracaju, Brazil
| | - Lavínia Kelly Barros Silva
- Graduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Brazil
- Institute of Technology and Research (ITP), Aracaju, Brazil
| | - Álvaro Silva Lima
- Graduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Brazil
- Institute of Technology and Research (ITP), Aracaju, Brazil
| | - Matheus Mendonça Pereira
- Department of Materials and Ceramic Engineering, CICECO ‐ Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Elton Franceschi
- Graduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Brazil
- Institute of Technology and Research (ITP), Aracaju, Brazil
| | - Cleide Mara Faria Soares
- Graduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Brazil
- Institute of Technology and Research (ITP), Aracaju, Brazil
- *Correspondence: Cleide Mara Faria Soares,
| |
Collapse
|
6
|
Li J, Zhang J, Shen S, Zhang B, Yu WW. Magnetic responsive Thermomyces lanuginosus lipase for biodiesel synthesis. MATERIALS TODAY. COMMUNICATIONS 2020; 24:101197. [PMID: 32837987 PMCID: PMC7245248 DOI: 10.1016/j.mtcomm.2020.101197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The low cost lipase derived from Thermomyces lanugionous was chosen to conjugate with Fe3O4 nanoparitcles as a magnetic responsive lipase (MRL) biocatalyst. The structure of MRL was observed by atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy analysis confirmed the lipase conjugated to Fe3O4 nanoparticles. Optimized conditions for the process of biodiesel production by MRL were investigated by the response surface methodology (RSM) and the Box-Behnken design (BBD). The optimized conditions for biodiesel production by MRL were as follows. The molar ratio of methanol to oil was 4.0, water content was 1.5 % as oil weight, the dosage of MRL to oil was 9.0 % (W/W) under 41 °C for 28 h. Under the optimized conditions, the yield of FAMEs by MRL reached 82.20 %. Further experiments showed that the MRL could be used 10 cycles and the yield of FAMEs decreased slightly by 10.97 %. These results indicated that Fe3O4 nanoparticle carrier could efficiently improve the FAMEs synthesis and enhance the MRL stabilization and reusability in the biodiesel production.
Collapse
Affiliation(s)
- Jing Li
- College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiandong Zhang
- College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuguang Shen
- College of chemistry and chemical engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bing Zhang
- College of biomedical engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - William W Yu
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA 71115, USA
| |
Collapse
|
7
|
How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 2018; 50:57-64. [DOI: 10.1016/j.copbio.2017.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
|
8
|
Arranz-Martínez P, Corzo-Martínez M, Vázquez L, Reglero G, Torres CF. Lipase catalyzed glycerolysis of ratfish liver oil at stirred tank basket reactor: A kinetic approach. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Skjold-Jørgensen J, Vind J, Svendsen A, Bjerrum MJ. Understanding the activation mechanism ofThermomyces lanuginosuslipase using rational design and tryptophan-induced fluorescence quenching. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | - Morten J. Bjerrum
- Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
10
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|