1
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
2
|
Chung MKJ, Miller RJ, Novak B, Wang Z, Ponder JW. Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field. J Chem Inf Model 2023; 63:2769-2782. [PMID: 37075788 PMCID: PMC10878370 DOI: 10.1021/acs.jcim.3c00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable multipole force field used in MD is a topic of ongoing discussion. To compare alternative methods, we participated in the SAMPL7 and SAMPL8 Gibb octaacid host-guest challenges to assess the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) polarizable multipole force field. Advantages of AMOEBA over fixed charge models include improved representation of molecular electrostatic potentials and better description of water occupying the unligated host cavity. Prospective predictions for 26 host-guest systems exhibit a mean unsigned error vs experiment of 0.848 kcal/mol across all absolute binding free energies, demonstrating excellent agreement between computational and experimental results. In addition, we explore two topics related to the inclusion of ions in MD simulations: use of a neutral co-alchemical protocol and the effect of salt concentration on binding affinity. Use of the co-alchemical method minimally affects computed energies, but salt concentration significantly perturbs our binding results. Higher salt concentration strengthens binding through classical charge screening. In particular, added Na+ ions screen negatively charged carboxylate groups near the binding cavity, thereby diminishing repulsive coulomb interactions with negatively charged guests. Overall, the AMOEBA results demonstrate the accuracy available through a force field providing a detailed energetic description of the four octaacid hosts and 13 charged organic guests. Use of the AMOEBA polarizable atomic multipole force field in conjunction with an alchemical free energy protocol can achieve chemical accuracy in application to realistic molecular systems.
Collapse
Affiliation(s)
- Moses K. J. Chung
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Physics, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Ryan J. Miller
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Borna Novak
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zhi Wang
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Jay W. Ponder
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
3
|
Puyo-Fourtine J, Juillé M, Hénin J, Clavaguéra C, Duboué-Dijon E. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization. J Phys Chem B 2022; 126:4022-4034. [PMID: 35608554 DOI: 10.1021/acs.jpcb.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of divalent cations to the ubiquitous phosphate group is essential for a number of key biological processes, such as DNA compaction, RNA folding, or interactions of some proteins with membranes. Yet, probing their binding sites, modes, and associated binding free energy is a challenge for both experiments and simulations. In simulations, standard force fields strongly overestimate the interaction between phosphate groups and divalent cations. Here, we examine how different strategies to include electronic polarization effects in force fields─implicitly, through the use of scaled charges or pair-specific Lennard-Jones parameters, or explicitly, with the polarizable force fields Drude and AMOEBA─capture the interactions of a model phosphate compound, dimethyl phosphate, with calcium and magnesium divalent cations. We show that both implicit and explicit approaches, when carefully parameterized, are successful in capturing the overall binding free energy and that common trends emerge from the comparison of different simulation approaches. Overall, the binding is very moderate, slightly weaker for Ca2+ than Mg2+, and the solvent-shared ion pair is slightly more stable than the contact monodentate ion pair. The bidentate ion pair is higher in energy (or even fully unstable for Mg2+). Our results thus suggest practical ways to capture the divalent cations with biomolecular phosphate groups in complex biochemical systems. In particular, the computational efficiency of implicit models makes them ideally suited for large-scale simulations of biological assemblies, with improved accuracy compared to state-of-the-art fixed-charge force fields.
Collapse
Affiliation(s)
- Julie Puyo-Fourtine
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Marie Juillé
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Jérôme Hénin
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Elise Duboué-Dijon
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| |
Collapse
|
4
|
Wu Z, Biggin PC. Correction Schemes for Absolute Binding Free Energies Involving Lipid Bilayers. J Chem Theory Comput 2022; 18:2657-2672. [PMID: 35315270 PMCID: PMC9082507 DOI: 10.1021/acs.jctc.1c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Absolute
binding free-energy (ABFE) calculations are playing an
increasing role in drug design, especially as they can be performed
on a range of disparate compounds and direct comparisons between them
can be made. It is, however, especially important to ensure that they
are as accurate as possible, as unlike relative binding free-energy
(RBFE) calculations, one does not benefit as much from a cancellation
of errors during the calculations. In most modern implementations
of ABFE calculations, a particle mesh Ewald scheme is typically used
to treat the electrostatic contribution to the free energy. A central
requirement of such schemes is that the box preserves neutrality throughout
the calculation. There are many ways to deal with this problem that
have been discussed over the years ranging from a neutralizing plasma
with a post hoc correction term through to a simple co-alchemical
ion within the same box. The post hoc correction approach is the most
widespread. However, the vast majority of these studies have been
applied to a soluble protein in a homogeneous solvent (water or salt
solution). In this work, we explore which of the more common approaches
would be the most suitable for a simulation box with a lipid bilayer
within it. We further develop the idea of the so-called Rocklin correction
for lipid-bilayer systems and show how such a correction could work.
However, we also show that it will be difficult to make this generalizable
in a practical way and thus we conclude that the use of a “co-alchemical
ion” is the most useful approach for simulations involving
lipid membrane systems.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
5
|
Abstract
Constrained peptides represent a relatively new class of biologic therapeutics, which have the potential to overcome several limitations of small-molecule drugs, and of designed antibodies. Because of their modest size, the rational design of such peptides is becoming increasingly amenable to computer simulation; multi-microsecond molecular dynamic (MD) simulations are now routinely possible on consumer-grade graphical processors (GPUs). Here, we describe the procedures for performing and analyzing MD simulations of hydrocarbon-stapled peptides using the CHARMM energy function, in isolation and in complex with a binding partner, to investigate their conformational properties and to compute changes in their binding affinity upon mutation.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Aravinda Munasinghe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Walker B, Jing Z, Ren P. Molecular dynamics free energy simulations of ATP:Mg 2+ and ADP:Mg 2+ using the polarizable force field AMOEBA. MOLECULAR SIMULATION 2021; 47:439-448. [PMID: 34421214 DOI: 10.1080/08927022.2020.1725003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ATPases and GTPases are two important classes of protein that play critical roles in energy transduction, cellular signaling, gene regulation and catalysis. These proteins use cofactors such as nucleoside di and tri-phosphates (NTP, NDP) and can detect the difference between NDP and NTP which then induce different protein conformations. Mechanisms that drive proteins into the NTP or NDP conformation may depend on factors such as ligand structure and how Mg2+ coordinates with the ligand, amino acids in the pocket and water molecules. Here, we have used the advanced electrostatic and polarizable force field AMOEBA and molecular dynamics free energy simulations (MDFE) to examine the various binding mechanisms of ATP:Mg2+ and ADP:Mg2+.We compared the ATP:Mg2+ binding with previous studies using non-polarizable force fields and experimental data on the binding affinity. It was found that the total free energy of binding for ATP:Mg2+ (-7.00 ± 2.13 kcal/mol) is in good agreement with experimental values (-8.6 ± .2 kcal/mol)1. In addition, parameters for relevant protonation states of ATP, ADP, GTP and GDP have been derived. These parameters will allow for researchers to investigate biochemical phenomena involving NTP's and NDP's with greater accuracy than previous studies involving non-polarizable force fields.
Collapse
Affiliation(s)
- Brandon Walker
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Duboué-Dijon E, Hénin J. Building intuition for binding free energy calculations: Bound state definition, restraints, and symmetry. J Chem Phys 2021; 154:204101. [PMID: 34241173 DOI: 10.1063/5.0046853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The theory behind computation of absolute binding free energies using explicit-solvent molecular simulations is well-established, yet somewhat complex, with counter-intuitive aspects. This leads to frequent frustration, common misconceptions, and sometimes erroneous numerical treatment. To improve this, we present the main practically relevant segments of the theory with constant reference to physical intuition. We pinpoint the role of the implicit or explicit definition of the bound state (or the binding site) to make a robust link between an experimental measurement and a computational result. We clarify the role of symmetry and discuss cases where symmetry number corrections have been misinterpreted. In particular, we argue that symmetry corrections as classically presented are a source of confusion and could be advantageously replaced by restraint free energy contributions. We establish that contrary to a common intuition, partial or missing sampling of some modes of symmetric bound states does not affect the calculated decoupling free energies. Finally, we review these questions and pitfalls in the context of a few common practical situations: binding to a symmetric receptor (equivalent binding sites), binding of a symmetric ligand (equivalent poses), and formation of a symmetric complex, in the case of homodimerization.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - J Hénin
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
8
|
Joseph TT, Bu W, Lin W, Zoubak L, Yeliseev A, Liu R, Eckenhoff RG, Brannigan G. Ketamine Metabolite (2 R,6 R)-Hydroxynorketamine Interacts with μ and κ Opioid Receptors. ACS Chem Neurosci 2021; 12:1487-1497. [PMID: 33905229 PMCID: PMC8154314 DOI: 10.1021/acschemneuro.0c00741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
![]()
Ketamine is an anesthetic,
analgesic, and antidepressant whose
secondary metabolite (2R,6R)-hydroxynorketamine
(HNK) has N-methyl-d-aspartate-receptor-independent
antidepressant activity in a rodent model. In humans, naltrexone attenuates
its antidepressant effect, consistent with opioid pathway involvement.
No detailed biophysical description is available of opioid receptor
binding of ketamine or its metabolites. Using molecular dynamics simulations
with free energy perturbation, we characterize the binding site and
affinities of ketamine and metabolites in μ and κ opioid
receptors, finding a profound effect of the protonation state. G-protein
recruitment assays show that HNK is an inverse agonist, attenuated
by naltrexone, in these receptors with IC50 values congruous
with our simulations. Overall, our findings are consistent with opioid
pathway involvement in ketamine function.
Collapse
Affiliation(s)
- Thomas T. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wenzhen Lin
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lioudmila Zoubak
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Alexei Yeliseev
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
9
|
Duboué-Dijon E, Javanainen M, Delcroix P, Jungwirth P, Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys 2021; 153:050901. [PMID: 32770904 DOI: 10.1063/5.0017775] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge-charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - M Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Delcroix
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - H Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
10
|
Amezcua M, El Khoury L, Mobley DL. SAMPL7 Host-Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J Comput Aided Mol Des 2021; 35:1-35. [PMID: 33392951 PMCID: PMC8121194 DOI: 10.1007/s10822-020-00363-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
The SAMPL challenges focus on testing and driving progress of computational methods to help guide pharmaceutical drug discovery. However, assessment of methods for predicting binding affinities is often hampered by computational challenges such as conformational sampling, protonation state uncertainties, variation in test sets selected, and even lack of high quality experimental data. SAMPL blind challenges have thus frequently included a component focusing on host-guest binding, which removes some of these challenges while still focusing on molecular recognition. Here, we report on the results of the SAMPL7 blind prediction challenge for host-guest affinity prediction. In this study, we focused on three different host-guest categories-a familiar deep cavity cavitand series which has been featured in several prior challenges (where we examine binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which are monofunctionalized around the rim to add amino acid-like functionality (where we examine binding of two guests to a series of hosts), and binding of a series of guests to a new acyclic TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods based on molecular simulations, and overall success was mixed, though several methods stood out. As in SAMPL6, we find that one strategy for achieving reasonable accuracy here was to make empirical corrections to binding predictions based on previous data for host categories which have been studied well before, though this can be of limited value when new systems are included. Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force field had considerable success for the two host categories in which they participated. The new TrimerTrip system was also found to introduce some sampling problems, because multiple conformations may be relevant to binding and interconvert only slowly. Overall, results in this challenge tentatively suggest that further investigation of polarizable force fields for these challenges may be warranted.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Shi Y, Laury ML, Wang Z, Ponder JW. AMOEBA binding free energies for the SAMPL7 TrimerTrip host-guest challenge. J Comput Aided Mol Des 2021; 35:79-93. [PMID: 33140208 PMCID: PMC7867568 DOI: 10.1007/s10822-020-00358-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
As part of the SAMPL7 host-guest binding challenge, the AMOEBA force field was applied to calculate the absolute binding free energy for 16 charged organic ammonium guests to the TrimerTrip host, a recently reported acyclic cucurbituril-derived clip host structure with triptycene moieties at its termini. Here we report binding free energy calculations for this system using the AMOEBA polarizable atomic multipole force field and double annihilation free energy methodology. Conformational analysis of the host suggests three families of conformations that do not interconvert in solution on a time scale available to nanosecond molecular dynamics (MD) simulations. Two of these host conformers, referred to as the "indent" and "overlap" structures, are capable of binding guest molecules. As a result, the free energies of all 16 guests binding to both conformations were computed separately, and combined to produce values for comparison with experiment. Initial ranked results submitted as part of the SAMPL7 exercise had a mean unsigned error (MUE) from experimental binding data of 2.14 kcal/mol. Subsequently, a rigorous umbrella sampling reference calculation was used to better determine the free energy difference between unligated "indent" and "overlap" host conformations. Revised binding values for the 16 guests pegged to this umbrella sampling reference reduced the MUE to 1.41 kcal/mol, with a correlation coefficient (Pearson R) between calculated and experimental binding values of 0.832 and a rank correlation (Kendall τ) of 0.65. Overall, the AMOEBA results demonstrate no significant systematic error, suggesting the force field provides an accurate energetic description of the TrimerTrip host, and an appropriate balance of solvation and desolvation effects associated with guest binding.
Collapse
Affiliation(s)
- Yuanjun Shi
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Marie L Laury
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Zhi Wang
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jay W Ponder
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Mendes de Oliveira D, Zukowski SR, Palivec V, Hénin J, Martinez-Seara H, Ben-Amotz D, Jungwirth P, Duboué-Dijon E. Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy. Phys Chem Chem Phys 2020; 22:24014-24027. [DOI: 10.1039/d0cp02987d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine Raman-MCR vibrational spectroscopy experiments with ab initio and classical MD simulations to gain molecular insights into carboxylate–cation binding.
Collapse
Affiliation(s)
| | | | - Vladimir Palivec
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Jérôme Hénin
- CNRS, Université de Paris
- UPR 9080
- Laboratoire de Biochimie Théorique
- 13 Rue Pierre et Marie Curie
- Paris
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Dor Ben-Amotz
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Elise Duboué-Dijon
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| |
Collapse
|
13
|
Jing Z, Qi R, Thibonnier M, Ren P. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides. J Chem Theory Comput 2019; 15:6422-6432. [PMID: 31553600 PMCID: PMC6889957 DOI: 10.1021/acs.jctc.9b00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations. To achieve a reliable prediction of the hybridization free energy, the AMOEBA polarizable force field and the free energy perturbation technique were employed. The calculated hybridization free energies are generally compatible with previous experiments. For LNA and PNA, the enhanced duplex stability can be explained by the preorganization mechanism, i.e., the single strands adopt stable helical structures similar to those in the duplex. For PS, the S and R isomers (Sp and Rp) have preferences for C2'-endo and C3'-endo sugar puckering conformations, respectively, and therefore Sp is less stable than Rp in DNA/RNA hybrids. In addition, the solvation penalty of Rp accounts for its destabilization effect. PS-LNA is similar to LNA as the sugar puckering is dominated by the locked sugar ring. This work demonstrated that MD simulations with polarizable force fields are useful for the understanding and design of modified nucleic acids.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
14
|
Qi R, Walker B, Jing Z, Yu M, Stancu G, Edupuganti R, Dalby KN, Ren P. Computational and Experimental Studies of Inhibitor Design for Aldolase A. J Phys Chem B 2019; 123:6034-6041. [PMID: 31268712 DOI: 10.1021/acs.jpcb.9b04551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycolytic enzyme fructose-bisphosphate aldolase A is an emerging therapeutic target in cancer. Recently, we have solved the crystal structure of murine aldolase in complex with naphthalene-2,6-diyl bisphosphate (ND1) that served as a template of the design of bisphosphate-based inhibitors. In this work, a series of ND1 analogues containing difluoromethylene (-CF2), methylene (-CH2), or aldehyde substitutions were designed. All designed compounds were studied using molecular dynamics (MD) simulations with the AMOEBA force field. Both energetics and structural analyses have been done to understand the calculated binding free energies. The average distances between ligand and protein atoms for ND1 were very similar to those for the ND1 crystal structure, which indicates that our MD simulation is sampling the correct conformation well. CF2 insertion lowers the binding free energy by 10-15 kcal/mol, while CF2 substitution slightly increases the binding free energy, which matches the experimental measurement. In addition, we found that NDB with two CF2 insertions, the strongest binder, is entropically driven, while others including NDA with one CF2 insertion are all enthalpically driven. This work provides insights into the mechanisms underlying protein-phosphate binding and enhances the capability of applying computational and theoretical frameworks to model, predict, and design diagnostic strategies targeting cancer.
Collapse
Affiliation(s)
| | | | | | - Maiya Yu
- Department of Biochemistry and Mathematics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | | | | | | | | |
Collapse
|
15
|
Holden ZC, Rana B, Herbert JM. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron. J Chem Phys 2019; 150:144115. [DOI: 10.1063/1.5089673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Zachary C. Holden
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
Ou SC, Pettitt BM. Free Energy Calculations Based on Coupling Proximal Distribution Functions and Thermodynamic Cycles. J Chem Theory Comput 2019; 15:2649-2658. [PMID: 30768893 DOI: 10.1021/acs.jctc.8b01157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Techniques to calculate the free energy changes of a system are very useful in the study of biophysical and biochemical properties. In practice, free energy changes can be described with thermodynamic cycles, and the free energy change of an individual process can be computed by sufficiently sampling the corresponding configurations. However, this is still time-consuming especially for large biomolecular systems. Previously, we have shown that by utilizing precomputed solute-solvent correlations, so-called proximal distribution functions (pDF), we are capable of reconstructing the solvent environment near solute atoms, thus estimating the solute-solvent interactions and solvation free energies of molecules. In this contribution, we apply the technique of pDF-reconstructions to calculate chemical potentials and use this information in thermodynamic cycles. This illustrates how free energy changes of nontrivial chemical processes in aqueous solution systems can be rapidly estimated.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , 301 University Boulevard , Galveston , Texas 77555-0304 , United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , 301 University Boulevard , Galveston , Texas 77555-0304 , United States
| |
Collapse
|
17
|
Abstract
PDZ domains contain 80-100 amino acids and bind short C-terminal sequences of target proteins. Their specificity is essential for cellular signaling pathways. We studied the binding of the Tiam1 PDZ domain to peptides derived from the C-termini of its Syndecan-1 and Caspr4 targets. We used free energy perturbation (FEP) to characterize the binding energetics of one wild-type and 17 mutant complexes by simulating 21 alchemical transformations between pairs of complexes. Thirteen complexes had known experimental affinities. FEP is a powerful tool to understand protein/ligand binding. It depends, however, on the accuracy of molecular dynamics force fields and conformational sampling. Both aspects require continued testing, especially for ionic mutations. For six mutations that did not modify the net charge, we obtained excellent agreement with experiment using the additive, AMBER ff99SB force field, with a root mean square deviation (RMSD) of 0.37 kcal/mol. For six ionic mutations that modified the net charge, agreement was also good, with one large error (3 kcal/mol) and an RMSD of 0.9 kcal/mol for the other five. The large error arose from the overstabilization of a protein/peptide salt bridge by the additive force field. Four of the ionic mutations were also simulated with the polarizable Drude force field, which represents the first test of this force field for protein/ligand binding free energy changes. The large error was eliminated and the RMS error for the four mutations was reduced from 1.8 to 1.2 kcal/mol. The overall accuracy of FEP indicates it can be used to understand PDZ/peptide binding. Importantly, our results show that for ionic mutations in buried regions, electronic polarization plays a significant role.
Collapse
|
18
|
Ekimoto T, Yamane T, Ikeguchi M. Elimination of Finite-Size Effects on Binding Free Energies via the Warp-Drive Method. J Chem Theory Comput 2018; 14:6544-6559. [DOI: 10.1021/acs.jctc.8b00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
19
|
Villa F, MacKerell AD, Roux B, Simonson T. Classical Drude Polarizable Force Field Model for Methyl Phosphate and Its Interactions with Mg 2. J Phys Chem A 2018; 122:6147-6155. [PMID: 29966419 PMCID: PMC6062457 DOI: 10.1021/acs.jpca.8b04418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphate groups are essential components of nucleic acids and proteins, whose interactions with solvent, metal ions, and ionic side chains help control folding and binding. Methyl phosphate (MP) represents a simple analog of phosphate moieties that are post-translation modifications in proteins and present at the termini of nucleic acids, among other environments. In the present study, we optimized parameters for use in polarizable molecular dynamics simulations of MP in its mono- and dianionic forms, MP- ≡ CH3HPO4- and MP2- ≡ CH3PO42-, along with P i2- ≡ HPO42-, in the context of the classical Drude oscillator model. Parameter optimization was done in a manner consistent with the remainder of the Drude molecular mechanics force field, choosing atomic charges and polarizabilities to reproduce molecular properties from quantum mechanics as well as experimental hydration free energies. Optimized parameters were similar to existing dimethyl phosphate parameters, with a few significant differences. The developed parameters were then used to compute magnesium binding affinities in aqueous solution, using alchemical molecular dynamics free energy simulations. Good agreement with experiment was obtained, and outer sphere binding was shown to be predominant for MP- and MP2-.
Collapse
Affiliation(s)
- Francesco Villa
- Laboratoire de Biochimie, CNRS UMR7654, Ecole Polytechnique , Palaiseau 91128 , France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60637 , United States
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Thomas Simonson
- Laboratoire de Biochimie, CNRS UMR7654, Ecole Polytechnique , Palaiseau 91128 , France
| |
Collapse
|
20
|
Bielecki M, Howe GW, Kluger R. Charge Dispersion and Its Effects on the Reactivity of Thiamin-Derived Breslow Intermediates. Biochemistry 2018; 57:3867-3872. [PMID: 29856601 DOI: 10.1021/acs.biochem.8b00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzymic decarboxylation of 2-ketoacids proceeds via their C2-thiazolium adducts of thiamin diphosphate (ThDP). Loss of CO2 from these adducts leads to reactive species that are known as Breslow intermediates. The protein-bound adducts of the 2-ketoacids and ThDP are several orders of magnitude more reactive than the synthetic analogues in solution. Studies of enzymes are consistent with formulation of protein-bound Breslow intermediates with localized carbanionic character at the reactive C2α position, reflecting the charge-stabilized transition state that leads to this form. Our study reveals that nonenzymic decarboxylation of the related thiamin adducts proceeds to the alternative charge-dispersed enol form of the Breslow intermediate. These differences suggest that the greatly enhanced rate of decarboxylation of the precursors to Breslow intermediates in enzymes arises from maintenance of the carbanionic character at the position from which the carboxyl group departs, avoiding charge dispersion by stabilizing electrostatic interactions with the protein as formulated by Warshel. Applying Guthrie's "no-barrier" addition to Marcus theory also leads to the conclusion that maintaining the tetrahedral carbanion at C2α of the resulting adduct minimizes associated kinetic barriers by avoiding rehybridization as part of steps to and from the intermediate. Finally, maintenance of the reactive energetic carbanion agrees with the concepts of Albery and Knowles as the outcome of evolved enzymic processes.
Collapse
Affiliation(s)
- Michael Bielecki
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Graeme W Howe
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
21
|
Kumar M, Simonson T, Ohanessian G, Clavaguéra C. Corrigendum: Structure and Thermodynamics of Mg:Phosphate Interactions in Water: A Simulation Study. Chemphyschem 2018; 19:1117. [DOI: 10.1002/cphc.201800205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Olsson MA, García-Sosa AT, Ryde U. Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking. J Comput Aided Mol Des 2018; 32:211-224. [PMID: 28879536 PMCID: PMC5767205 DOI: 10.1007/s10822-017-0056-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 01/07/2023]
Abstract
We have studied the binding of 102 ligands to the farnesoid X receptor within the D3R Grand Challenge 2016 blind-prediction competition. First, we employed docking with five different docking software and scoring functions. The selected docked poses gave an average root-mean-squared deviation of 4.2 Å. Consensus scoring gave decent results with a Kendall's τ of 0.26 ± 0.06 and a Spearman's ρ of 0.41 ± 0.08. For a subset of 33 ligands, we calculated relative binding free energies with free-energy perturbation. Five transformations between the ligands involved a change of the net charge and we implemented and benchmarked a semi-analytic correction (Rocklin et al., J Chem Phys 139:184103, 2013) for artifacts caused by the periodic boundary conditions and Ewald summation. The results gave a mean absolute deviation of 7.5 kJ/mol compared to the experimental estimates and a correlation coefficient of R 2 = 0.1. These results were among the four best in this competition out of 22 submissions. The charge corrections were significant (7-8 kJ/mol) and always improved the results. By employing 23 intermediate states in the free-energy perturbation, there was a proper overlap between all states and the precision was 0.1-0.7 kJ/mol. However, thermodynamic cycles indicate that the sampling was insufficient in some of the perturbations.
Collapse
Affiliation(s)
- Martin A Olsson
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | | | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
23
|
Duignan TT, Baer MD, Schenter GK, Mundy CJ. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. J Chem Phys 2017; 147:161716. [DOI: 10.1063/1.4994912] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Timothy T. Duignan
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Marcel D. Baer
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Gregory K. Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Chistopher J. Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
24
|
Panel N, Sun YJ, Fuentes EJ, Simonson T. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain. Front Mol Biosci 2017; 4:65. [PMID: 29018806 PMCID: PMC5623046 DOI: 10.3389/fmolb.2017.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.
Collapse
Affiliation(s)
- Nicolas Panel
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Young Joo Sun
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ernesto J Fuentes
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, Iowa City, IA, United States
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
25
|
Abstract
Binding free energy calculations based on molecular simulations provide predicted affinities for biomolecular complexes. These calculations begin with a detailed description of a system, including its chemical composition and the interactions among its components. Simulations of the system are then used to compute thermodynamic information, such as binding affinities. Because of their promise for guiding molecular design, these calculations have recently begun to see widespread applications in early-stage drug discovery. However, many hurdles remain in making them a robust and reliable tool. In this review, we highlight key challenges of these calculations, discuss some examples of these challenges, and call for the designation of standard community benchmark test systems that will help the research community generate and evaluate progress. In our view, progress will require careful assessment and evaluation of new methods, force fields, and modeling innovations on well-characterized benchmark systems, and we lay out our vision for how this can be achieved.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697;
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
26
|
Simonson T, Hummer G, Roux B. Equivalence of M- and P-Summation in Calculations of Ionic Solvation Free Energies. J Phys Chem A 2017; 121:1525-1530. [DOI: 10.1021/acs.jpca.6b12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Simonson
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute
of Biophysics, Goethe-University Frankfurt, 60438 Frankfurt
am Main, Germany
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
27
|
Ou SC, Drake JA, Pettitt BM. Nonpolar Solvation Free Energy from Proximal Distribution Functions. J Phys Chem B 2017; 121:3555-3564. [PMID: 27992228 DOI: 10.1021/acs.jpcb.6b09528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using precomputed near neighbor or proximal distribution functions (pDFs) that approximate solvent density about atoms in a chemically bonded context one can estimate the solvation structures around complex solutes and the corresponding solute-solvent energetics. In this contribution, we extend this technique to calculate the solvation free energies (ΔG) of a variety of solutes. In particular we use pDFs computed for small peptide molecules to estimate ΔG for larger peptide systems. We separately compute the non polar (ΔGvdW) and electrostatic (ΔGelec) components of the underlying potential model. Here we show how the former can be estimated by thermodynamic integration using pDF-reconstructed solute-solvent interaction energy. The electrostatic component can be approximated with Linear Response theory as half of the electrostatic solute-solvent interaction energy. We test the method by calculating the solvation free energies of butane, propanol, polyalanine, and polyglycine and by comparing with traditional free energy simulations. Results indicate that the pDF-reconstruction algorithm approximately reproduces ΔGvdW calculated by benchmark free energy simulations to within ∼ kcal/mol accuracy. The use of transferable pDFs for each solute atom allows for a rapid estimation of ΔG for arbitrary molecular systems.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , 301 University Blvd, Galveston, Texas 77555-0304, United States
| | - Justin A Drake
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , 301 University Blvd, Galveston, Texas 77555-0304, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , 301 University Blvd, Galveston, Texas 77555-0304, United States
| |
Collapse
|
28
|
Zheng Y, Cui Q. Microscopic mechanisms that govern the titration response and pK a values of buried residues in staphylococcal nuclease mutants. Proteins 2016; 85:268-281. [PMID: 27862310 DOI: 10.1002/prot.25213] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
To probe the microscopic mechanisms that govern the titration behavior of buried ionizable groups, microsecond explicit solvent molecular dynamics simulations are carried out for several mutants of Staphylococcal nuclease using both fixed charge and polarizable force fields. While the ionization of Asp 66, Glu 66, and Lys 125 lead to enhanced structural fluctuations and partial unfolding of adjacent α-helical regions, the ionization of Lys 25 causes local unfolding of adjacent β sheets. Using the sampled conformational ensembles, good agreement with experimental pKa values is obtained with Poisson-Boltzmann calculations using a protein dielectric constant of 2-4 for V66D/E; slightly larger dielectric constants are needed for Lys mutants especially L25K, suggesting that structural responses beyond microseconds are involved in ionization of Lys 25. Overall, the set of unbiased simulations provides insights into the spatial and temporal scales of protein and solvent motions that dictate the diverse titration behaviors of buried protein residues. Proteins 2017; 85:268-281. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuqing Zheng
- Graduate Program in Biophysics, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin, 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706
| |
Collapse
|