1
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
2
|
Verma A, Sharma B, Kalia S, Alsanie WF, Thakur S, Thakur VK. Carboxymethyl cellulose based sustainable hydrogel for colon-specific delivery of gentamicin. Int J Biol Macromol 2023; 228:773-782. [PMID: 36577473 DOI: 10.1016/j.ijbiomac.2022.12.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
The current research includes the synthesis, improvement of NaCMC-cl-DMAA/AAc hydrogel and in-situ controlled release of gentamicin within various pH environments. The prepared hydrogel was then modified using boron nitride nanosheets aiming to enhancement in the adsorption rate. The prepared hydrogels were investigated by FTIR, XRD, FESEM, TGA/DSC, swelling and cell viability analysis. Cytotoxicity study indicated that prepared sample has a cytocompatibility nature towards healthy normal human cell line (FR2 cells). By changing the pH environment, the drug release properties of the hydrogels can be controlled. The cumulative rate of release for NaCMC-cl-DMAA/AAc hydrogel was 76.5 % at pH = 2.2 and 87.5 % at pH = 7.4. Whereas drug release rate for NaCMC-cl-DMAA/AAc-BNNSs hydrogel composite was 78.6 % at pH = 2.2 and 97.3 % at pH = 7.4 within 4320 min. Gentamicin release kinetics have been determined using the Korsemeyar-Peppas model, which confirms the drug release mechanism.
Collapse
Affiliation(s)
- Ankit Verma
- Department of Chemistry, Faculty of Science and Technology, ICFAI University, H.P., India.
| | - Bhawna Sharma
- Department of Chemistry, Shoolini Institute of Life Sciences & Business Managment Solan, H.P., India
| | - Susheel Kalia
- Department of Chemistry, Army Cadet College Wing of Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Walaa Fahad Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland; School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan, H.P., India.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
3
|
Atabay M, Sardroodi JJ, Ebrahimzadeh AR, Avestan MS. Modeling the Interaction of Anticancer Protein Azurin with the Nanosheets for Medical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maryam Atabay
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Chemistry Azarbaijan Shahid Madani University Tabriz Iran
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Lab Azarbaijan Shahid Madani University Tabriz Iran
- Molecular Science and Engineering Research Group (MSERG) Azarbaijan Shahid Madani University Tabriz Iran
- Department of Physics Azarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
4
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
5
|
Kumar S, Parekh SH. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun Chem 2020; 3:8. [PMID: 36703309 PMCID: PMC9814659 DOI: 10.1038/s42004-019-0254-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Abstract
Graphene, an allotrope of carbon, consists of a single layer of carbon atoms with uniquely tuneable properties. As such, graphene-based materials (GBMs) have gained interest for tissue engineering applications. GBMs are often discussed in the context of how different physicochemical properties affect cell physiology, without explicitly considering the impact of adsorbed proteins. Establishing a relationship between graphene properties, adsorbed proteins, and cell response is necessary as these proteins provide the surface upon which cells attach and grow. This review highlights the molecular adsorption of proteins on different GBMs, protein structural changes, and the connection to cellular function.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX, 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX, 78712, USA.
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, DE, USA.
| |
Collapse
|
6
|
Habibzadeh Mashatooki M, Rastkar Ebrahimzadeh A, Jahanbin Sardroodi J, Abbasi A. Investigation of TiO2 anatase (1 0 1), (1 0 0) and (1 1 0) facets as immobilizer for a potential anticancer RNA aptamer: a classical molecular dynamics simulation. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1605601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohaddeseh Habibzadeh Mashatooki
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirali Abbasi
- Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
- Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
7
|
Molecular Dynamics Investigation of the Interactions Between RNA Aptamer and Graphene-Monoxide/Boron-Nitride Surfaces: Applications to Novel Drug Delivery Systems. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Al Soubaihi RM, Furesi G, Saoud KM, Al-Muhtaseb SA, Khatat AE, Delogu LG, Dutta J. Silica and carbon decorated silica nanosheet impact on primary human immune cells. Colloids Surf B Biointerfaces 2018; 172:779-789. [PMID: 30266012 DOI: 10.1016/j.colsurfb.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023]
Abstract
Silica nanosheets (SiO2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO2 NS and SiO2 NS coated with carbon (C/SiO2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO2 NS compared to SiO2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.
Collapse
Affiliation(s)
- Rola Mohammad Al Soubaihi
- Functional Materials, Department of Applied Physics, The Royal Institute of Technology, School of Engineering Sciences, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden
| | | | - Khaled Mohammad Saoud
- Liberal Arts and Sciences Program, Virginia Commonwealth University in Qatar, P.O. Box 8095, Doha, Qatar.
| | | | - Ahmed El Khatat
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lucia Gemma Delogu
- University of Sassari, Sassari, 07100, Italy; Fondazione Citta' Della Speranza, Istituto di Ricerca Pediatrica, Padova, 35129, Italy.
| | - Joydeep Dutta
- Functional Materials, Department of Applied Physics, The Royal Institute of Technology, School of Engineering Sciences, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden
| |
Collapse
|