1
|
Javed R, Kapakayala AB, Nair NN. Buckets Instead of Umbrellas for Enhanced Sampling and Free Energy Calculations. J Chem Theory Comput 2024; 20:8450-8460. [PMID: 39344058 DOI: 10.1021/acs.jctc.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Umbrella sampling has been a workhorse for free energy calculations in molecular simulations for several decades. In conventional umbrella sampling, restraining bias potentials are strategically applied along one or several collective variables. Major drawbacks associated with this method are the requirement of a large number of bias windows and the poor sampling of the transverse coordinates. In this work, we propose an alternate formalism that departs from the traditional umbrella sampling to mitigate these issues, where we replace umbrella-type restraining bias potentials with bucket-type wall potentials. This modification permits one to formulate an efficient computational strategy leveraging wall potentials and metadynamics sampling. This new method, called "bucket sampling", can significantly reduce the computational cost of obtaining converged high-dimensional free energy surfaces. Extensions of the proposed method with temperature acceleration and replica exchange solute tempering are also demonstrated.
Collapse
Affiliation(s)
- Ramsha Javed
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anji Babu Kapakayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
3
|
Borgmans S, Rogge SMJ, Vanduyfhuys L, Van Speybroeck V. OGRe: Optimal Grid Refinement Protocol for Accurate Free Energy Surfaces and Its Application in Proton Hopping in Zeolites and 2D COF Stacking. J Chem Theory Comput 2023; 19:9032-9048. [PMID: 38084847 PMCID: PMC10753773 DOI: 10.1021/acs.jctc.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
While free energy surfaces are the crux of our understanding of many chemical and biological processes, their accuracy is generally unknown. Moreover, many developments to improve their accuracy are often complicated, limiting their general use. Luckily, several tools and guidelines are already in place to identify these shortcomings, but they are typically lacking in flexibility or fail to systematically determine how to improve the accuracy of the free energy calculation. To overcome these limitations, this work introduces OGRe, a Python package for optimal grid refinement in an arbitrary number of dimensions. OGRe is based on three metrics that gauge the confinement, consistency, and overlap of each simulation in a series of umbrella sampling (US) simulations, an enhanced sampling technique ubiquitously adopted to construct free energy surfaces for hindered processes. As these three metrics are fundamentally linked to the accuracy of the weighted histogram analysis method adopted to generate free energy surfaces from US simulations, they facilitate the systematic construction of accurate free energy profiles, where each metric is driven by a specific umbrella parameter. This allows for the derivation of a consistent and optimal collection of umbrellas for each simulation, largely independent of the initial values, thereby dramatically increasing the ease-of-use toward accurate free energy surfaces. As such, OGRe is particularly suited to determine complex free energy surfaces with large activation barriers and shallow minima, which underpin many physical and chemical transformations and hence to further our fundamental understanding of these processes.
Collapse
Affiliation(s)
- Sander Borgmans
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
4
|
Bajpai S, Petkov BK, Tong M, Abreu CRA, Nair NN, Tuckerman ME. An interoperable implementation of collective-variable based enhanced sampling methods in extended phase space within the OpenMM package. J Comput Chem 2023; 44:2166-2183. [PMID: 37464902 DOI: 10.1002/jcc.27182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Collective variable (CV)-based enhanced sampling techniques are widely used today for accelerating barrier-crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven-adiabatic free energy dynamics (d-AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques. Extended variables are kept at a much higher temperature than the physical temperature by ensuring adiabatic separation between the extended and physical subsystems and employing rigorous thermostatting. In this work, we present a computational platform to perform extended phase space enhanced sampling simulations using the open-source molecular dynamics engine OpenMM. The implementation allows users to have interoperability of sampling techniques, as well as employ state-of-the-art thermostats and multiple time-stepping. This work also presents protocols for determining the critical parameters and procedures for reconstructing high-dimensional free energy surfaces. As a demonstration, we present simulation results on the high dimensional conformational landscapes of the alanine tripeptide in vacuo, tetra-N-methylglycine (tetra-sarcosine) peptoid in implicit solvent, and the Trp-cage mini protein in explicit water.
Collapse
Affiliation(s)
- Shitanshu Bajpai
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Brian K Petkov
- Department of Chemistry, New York University (NYU), New York, New York, USA
| | - Muchen Tong
- Department of Chemistry, New York University (NYU), New York, New York, USA
| | - Charlles R A Abreu
- Chemical Engineering Department, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Mark E Tuckerman
- Department of Chemistry, New York University (NYU), New York, New York, USA
- Courant Institute of Mathematical Sciences, New York University (NYU), New York, New York, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Simons Center for Computational Physical Chemistry, New York University, New York, New York, USA
| |
Collapse
|
5
|
Tripathi S, Nair NN. Temperature Accelerated Sliced Sampling to Probe Ligand Dissociation from Protein. J Chem Inf Model 2023; 63:5182-5191. [PMID: 37540828 DOI: 10.1021/acs.jcim.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Modeling ligand unbinding in proteins to estimate the free energy of binding and probing the mechanism presents several challenges. They primarily pertain to the entropic bottlenecks resulting from protein and solvent conformations. While exploring the unbinding processes using enhanced sampling techniques, very long simulations are required to sample all of the conformational states as the system gets trapped in local free energy minima along transverse coordinates. Here, we demonstrate that temperature accelerated sliced sampling (TASS) is an ideal approach to overcome some of the difficulties faced by conventional sampling methods in studying ligand unbinding. Using TASS, we study the unbinding of avibactam inhibitor molecules from the Class C β-lactamase (CBL) active site. Extracting CBL-avibactam unbinding free energetics, unbinding pathways, and identifying critical interactions from the TASS simulations are demonstrated.
Collapse
Affiliation(s)
- Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Burgin T, Pfaendtner J, Beck DAC. Quick and Accurate Estimates of Mutation Effects on Transition-State Stabilization of Enzymes from Molecular Simulations with Restrained Transition States. J Phys Chem B 2022; 126:9964-9970. [PMID: 36413982 DOI: 10.1021/acs.jpcb.2c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Data science and machine learning are revolutionizing enzyme engineering; however, high-throughput simulations for screening large libraries of enzyme variants remain a challenge. Here, we present a novel but highly simple approach to comparing enzyme variants with fully atomistic classical molecular dynamics (MD) simulations on a tractable timescale. Our method greatly simplifies the problem by restricting sampling only to the reaction transition state, and we show that the resulting measurements of transition-state stability are well correlated with experimental activity measurements across two highly distinct enzymes, even for mutations with effects too small to resolve with free energy methods. This method will enable atomistic simulations to achieve sampling coverage for enzyme variant prescreening and machine learning model training on a scale that was previously not possible.
Collapse
Affiliation(s)
- Tucker Burgin
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Gupta A, Verma S, Javed R, Sudhakar S, Srivastava S, Nair NN. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. J Comput Chem 2022; 43:1186-1200. [PMID: 35510789 DOI: 10.1002/jcc.26882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
Abstract
Temperature-accelerated sliced sampling (TASS) is an enhanced sampling method for achieving accelerated and controlled exploration of high-dimensional free energy landscapes in molecular dynamics simulations. With the aid of umbrella bias potentials, the TASS method realizes a controlled exploration and divide-and-conquer strategy for computing high-dimensional free energy surfaces. In TASS, diffusion of the system in the collective variable (CV) space is enhanced with the help of metadynamics bias and elevated-temperature of the auxiliary degrees of freedom (DOF) that are coupled to the CVs. Usually, a low-dimensional metadynamics bias is applied in TASS. In order to further improve the performance of TASS, we propose here to use a highdimensional metadynamics bias, in the same form as in a parallel bias metadynamics scheme. Here, a modified reweighting scheme, in combination with artificial neural network is used for computing unbiased probability distribution of CVs and projections of high-dimensional free energy surfaces. We first validate the accuracy and efficiency of our method in computing the four-dimensional free energy landscape for alanine tripeptide in vacuo. Subsequently, we employ the approach to calculate the eight-dimensional free energy landscape of alanine pentapeptide in vacuo. Finally, the method is applied to a more realistic problem wherein we compute the broad four-dimensional free energy surface corresponding to the deacylation of a drug molecule which is covalently complexed with a β-lactamase enzyme. We demonstrate that using parallel bias in TASS improves the efficiency of exploration of high-dimensional free energy landscapes.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ramsha Javed
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Suraj Sudhakar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
8
|
Paul TK, Taraphder S. Nonlinear Reaction Coordinate of an Enzyme Catalyzed Proton Transfer Reaction. J Phys Chem B 2022; 126:1413-1425. [PMID: 35138854 DOI: 10.1021/acs.jpcb.1c08760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present an in-depth study on the theoretical calculation of an optimum reaction coordinate as a linear or nonlinear combination of important collective variables (CVs) sampled from an ensemble of reactive transition paths for an intramolecular proton transfer reaction catalyzed by the enzyme human carbonic anhydrase (HCA) II. The linear models are optimized by likelihood maximization for a given number of CVs. The nonlinear models are based on an artificial neural network with the same number of CVs and optimized by minimizing the root-mean-square error in comparison to a training set of committor estimators generated for the given transition. The nonlinear reaction coordinate thus obtained yields the free energy of activation and rate constant as 9.46 kcal mol-1 and 1.25 × 106 s-1, respectively. These estimates are found to be in quantitative agreement with the known experimental results. We have also used an extended autoencoder model to show that a similar analysis can be carried out using a single CV only. The resultant free energies and kinetics of the reaction slightly overestimate the experimental data. The implications of these results are discussed using a detailed microkinetic scheme of the proton transfer reaction catalyzed by HCA II.
Collapse
Affiliation(s)
- Tanmoy Kumar Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Kapakayala AB, Nair NN. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics. J Comput Chem 2021; 42:2233-2240. [PMID: 34585768 DOI: 10.1002/jcc.26752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/22/2023]
Abstract
Methods that combine collective variable (CV) based enhanced sampling and global tempering approaches are used in speeding-up the conformational sampling and free energy calculation of large and soft systems with a plethora of energy minima. In this paper, a new method of this kind is proposed in which the well-sliced metadynamics approach (WSMTD) is united with replica exchange with solute tempering (REST2) method. WSMTD employs a divide-and-conquer strategy wherein high-dimensional slices of a free energy surface are independently sampled and combined. The method enables one to accomplish a controlled exploration of the CV-space with a restraining bias as in umbrella sampling, and enhance-sampling of one or more orthogonal CVs using a metadynamics like bias. The new hybrid method proposed here enables boosting the sampling of more slow degrees of freedom in WSMTD simulations, without the need to specify associated CVs, through a replica exchange scheme within the framework of REST2. The high-dimensional slices of the probability distributions of CVs computed from the united WSMTD and REST2 simulations are subsequently combined using the weighted histogram analysis method to obtain the free energy surface. We show that the new method proposed here is accurate, improves the conformational sampling, and achieves quick convergence in free energy estimates. We demonstrate this by computing the conformational free energy landscapes of solvated alanine tripeptide and Trp-cage mini protein in explicit water.
Collapse
Affiliation(s)
- Anji Babu Kapakayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
10
|
Pal A, Pal S, Verma S, Shiga M, Nair NN. Mean force based temperature accelerated sliced sampling: Efficient reconstruction of high dimensional free energy landscapes. J Comput Chem 2021; 42:1996-2003. [DOI: 10.1002/jcc.26727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Asit Pal
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Subhendu Pal
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Shivani Verma
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Motoyuki Shiga
- Center for Computational Science and E‐Systems Japan Atomic Energy Agency Chiba Japan
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
11
|
Bolhuis PG, Swenson DWH. Transition Path Sampling as Markov Chain Monte Carlo of Trajectories: Recent Algorithms, Software, Applications, and Future Outlook. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Peter G. Bolhuis
- Amsterdam Center for Multiscale Modeling van 't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - David W. H. Swenson
- Centre Blaise Pascal Ecole Normale Superieure 46, allée d'Italie 69364 Lyon Cedex 07 France
| |
Collapse
|
12
|
Levintov L, Paul S, Vashisth H. Reaction Coordinate and Thermodynamics of Base Flipping in RNA. J Chem Theory Comput 2021; 17:1914-1921. [PMID: 33594886 DOI: 10.1021/acs.jctc.0c01199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Base flipping is a key biophysical event involved in recognition of various ligands by ribonucleic acid (RNA) molecules. However, the mechanism of base flipping in RNA remains poorly understood, in part due to the lack of atomistic details on complex rearrangements in neighboring bases. In this work, we applied transition path sampling (TPS) methods to study base flipping in a double-stranded RNA (dsRNA) molecule that is known to interact with RNA-editing enzymes through this mechanism. We obtained an ensemble of 1000 transition trajectories to describe the base-flipping process. We used the likelihood maximization method to determine the refined reaction coordinate (RC) consisting of two collective variables (CVs), a distance and a dihedral angle between nucleotides that form stacking interactions with the flipping base. The free energy profile projected along the refined RC revealed three minima, two corresponding to the initial and final states and one for a metastable state. We suggest that the metastable state likely represents a wobbled conformation of nucleobases observed in NMR studies that is often characterized as the flipped state. The analyses of reactive trajectories further revealed that the base flipping is coupled to a global conformational change in a stem-loop of dsRNA.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Sanjib Paul
- Department of Chemistry, New York University, New York 10003, New York, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
13
|
Fatafta H, Samantray S, Sayyed-Ahmad A, Coskuner-Weber O, Strodel B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:135-185. [PMID: 34656328 DOI: 10.1016/bs.pmbts.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure but do exhibit some dynamical and structural ordering. The structural plasticity of IDPs indicates that entropy-driven motions are crucial for their function. Many IDPs undergo function-related disorder-to-order transitions upon by their interaction with specific binding partners. Approaches that are based on both experimental and theoretical tools enable the biophysical characterization of IDPs. Molecular simulations provide insights into IDP structural ensembles and disorder-to-order transition mechanisms. However, such studies depend strongly on the chosen force field parameters and simulation techniques. In this chapter, we provide an overview of IDP characteristics, review all-atom force fields recently developed for IDPs, and present molecular dynamics-based simulation methods that allow IDP ensemble generation as well as the characterization of disorder-to-order transitions. In particular, we introduce metadynamics, replica exchange molecular dynamics simulations, and also kinetic models resulting from Markov State modeling, and provide various examples for the successful application of these simulation methods to IDPs.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; AICES Graduate School, RWTH Aachen University, Aachen, Germany
| | | | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, Istanbul, Turkey
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Aarøen O, Kiær H, Riccardi E. PyVisA
: Visualization and Analysis of path sampling trajectories. J Comput Chem 2020; 42:435-446. [DOI: 10.1002/jcc.26467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ola Aarøen
- Department of Biotechnology and Food Science Norwegian University of Science and Technology Trondheim Norway
| | - Henrik Kiær
- Department of Chemistry Norwegian University of Science and Technology Trondheim Norway
| | - Enrico Riccardi
- Department of Chemistry Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
15
|
Leitold C, Mundy CJ, Baer MD, Schenter GK, Peters B. Solvent reaction coordinate for an SN2 reaction. J Chem Phys 2020; 153:024103. [DOI: 10.1063/5.0002766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christian Leitold
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Gregory K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Baron Peters
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Karmakar S, Keshavamurthy S. Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective. Phys Chem Chem Phys 2020; 22:11139-11173. [DOI: 10.1039/d0cp01413c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The onset of facile intramolecular vibrational energy flow can be related to features in the connected network of anharmonic resonances in the classical phase space.
Collapse
Affiliation(s)
- Sourav Karmakar
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|