1
|
King EM, Du CX, Zhu QZ, Schoenholz SS, Brenner MP. Programming patchy particles for materials assembly design. Proc Natl Acad Sci U S A 2024; 121:e2311891121. [PMID: 38913891 PMCID: PMC11228463 DOI: 10.1073/pnas.2311891121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 06/26/2024] Open
Abstract
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.
Collapse
Affiliation(s)
- Ella M King
- Department of Physics, Harvard University, Cambridge, MA 02139
| | - Chrisy Xiyu Du
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
- Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Qian-Ze Zhu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
| | | | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
- Google Research, Mountainview, CA 94043
| |
Collapse
|
2
|
Falk MJ, Wu J, Matthews A, Sachdeva V, Pashine N, Gardel ML, Nagel SR, Murugan A. Learning to learn by using nonequilibrium training protocols for adaptable materials. Proc Natl Acad Sci U S A 2023; 120:e2219558120. [PMID: 37364104 PMCID: PMC10319023 DOI: 10.1073/pnas.2219558120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Evolution in time-varying environments naturally leads to adaptable biological systems that can easily switch functionalities. Advances in the synthesis of environmentally responsive materials therefore open up the possibility of creating a wide range of synthetic materials which can also be trained for adaptability. We consider high-dimensional inverse problems for materials where any particular functionality can be realized by numerous equivalent choices of design parameters. By periodically switching targets in a given design algorithm, we can teach a material to perform incompatible functionalities with minimal changes in design parameters. We exhibit this learning strategy for adaptability in two simulated settings: elastic networks that are designed to switch deformation modes with minimal bond changes and heteropolymers whose folding pathway selections are controlled by a minimal set of monomer affinities. The resulting designs can reveal physical principles, such as nucleation-controlled folding, that enable such adaptability.
Collapse
Affiliation(s)
- Martin J. Falk
- Department of Physics, The University of Chicago, Chicago, IL60637
| | - Jiayi Wu
- Department of Physics, The University of Chicago, Chicago, IL60637
| | - Ayanna Matthews
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL60637
| | - Vedant Sachdeva
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL60637
| | - Nidhi Pashine
- School of Engineering and Applied Science, Yale University, New Haven, CT06511
| | - Margaret L. Gardel
- Department of Physics, The University of Chicago, Chicago, IL60637
- James Franck Institute, The University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL60637
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Sidney R. Nagel
- Department of Physics, The University of Chicago, Chicago, IL60637
- James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Arvind Murugan
- Department of Physics, The University of Chicago, Chicago, IL60637
- James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Rivera-Rivera LY, Moore TC, Glotzer SC. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy. SOFT MATTER 2023; 19:2726-2736. [PMID: 36974942 DOI: 10.1039/d2sm01593e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.
Collapse
Affiliation(s)
| | - Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Hou C, Gao L, Wang Y, Yan LT. Entropic control of nanoparticle self-assembly through confinement. NANOSCALE HORIZONS 2022; 7:1016-1028. [PMID: 35762392 DOI: 10.1039/d2nh00156j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Entropy can be the sole driving force for the construction and regulation of ordered structures of soft matter systems. Specifically, under confinement, the entropic penalty could induce enhanced entropic effects which potentially generate visually ordered structures. Therefore, spatial confinement or a crowding environment offers an important approach to control entropy effects in these systems. Here, we review how spatial confinement-mediated entropic effects accurately and even dynamically control the self-assembly of nanoscale objects into ordered structures, focusing on our efforts towards computer simulations and theoretical analysis. First, we introduce the basic principle of entropic ordering through confinement. We then introduce the applications of this concept to various systems containing nanoparticles, including polymer nanocomposites, biological macromolecular systems and macromolecular colloids. Finally, the future directions and challenges for tailoring nanoparticle organization through spatial confinement-mediated entropic effects are detailed. We expect that this review could stimulate further efforts in the fundamental research on the relationship between confinement and entropy and in the applications of this concept for designer nanomaterials.
Collapse
Affiliation(s)
- Cuiling Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
5
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles. Angew Chem Int Ed Engl 2022; 61:e202117455. [PMID: 35129874 PMCID: PMC9307011 DOI: 10.1002/anie.202117455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/15/2022]
Abstract
Supraparticles are spherical colloidal crystals prepared by confined self‐assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal–organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle‐dependent coloration of the MOF supraparticles to the presence of ordered, onion‐like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well‐visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal‐Organic Framework Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Gudrun Bleyer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Eric S. A. Goerlitzer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Michael Engel
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
- ICREA Pg. Lluis Companys 23 08010 Barcelona Spain
| | - Nicolas Vogel
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| |
Collapse
|