1
|
Doherty J, Raoof A, Hussain A, Wolna M, Cinque G, Brown M, Gardner P, Denbigh J. Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability. Analyst 2019; 144:997-1007. [PMID: 30403210 DOI: 10.1039/c8an01566j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction.
Collapse
Affiliation(s)
- James Doherty
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Doherty J, Zhang Z, Wehbe K, Cinque G, Gardner P, Denbigh J. Increased optical pathlength through aqueous media for the infrared microanalysis of live cells. Anal Bioanal Chem 2018; 410:5779-5789. [PMID: 29968104 PMCID: PMC6096700 DOI: 10.1007/s00216-018-1188-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of action of each agent. Graphical abstract ![]()
Collapse
Affiliation(s)
- James Doherty
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Zhe Zhang
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Katia Wehbe
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Gianfelice Cinque
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. .,School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Joanna Denbigh
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
3
|
Wrobel TP, Bhargava R. Infrared Spectroscopic Imaging Advances as an Analytical Technology for Biomedical Sciences. Anal Chem 2018; 90:1444-1463. [PMID: 29281255 PMCID: PMC6421863 DOI: 10.1021/acs.analchem.7b05330] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tomasz P. Wrobel
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Yoo H, Nagornyak E, Das R, Wexler AD, Pollack GH. Contraction-Induced Changes in Hydrogen Bonding of Muscle Hydration Water. J Phys Chem Lett 2014; 5:947-952. [PMID: 24803993 PMCID: PMC3985702 DOI: 10.1021/jz5000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Protein-water interaction plays a crucial role in protein dynamics and hence function. To study the chemical environment of water and proteins with high spatial resolution, synchrotron radiation-Fourier transform infrared (SR-FTIR) spectromicroscopy was used to probe skeletal muscle myofibrils. Observing the OH stretch band showed that water inside of relaxed myofibrils is extensively hydrogen-bonded with little or no free OH. In higher-resolution measurements obtained with single isolated myofibrils, the water absorption peaks were relatively higher within the center region of the sarcomere compared to those in the I-band region, implying higher hydration capacity of thick filaments compared to the thin filaments. When specimens were activated, changes in the OH stretch band showed significant dehydrogen bonding of muscle water; this was indicated by increased absorption at ∼3480 cm-1 compared to relaxed myofibrils. These contraction-induced changes in water were accompanied by splitting of the amide I (C=O) peak, implying that muscle proteins transition from α-helix to β-sheet-rich structures. Hence, muscle contraction can be characterized by a loss of order in the muscle-protein complex, accompanied by a destructuring of hydration water. The findings shed fresh light on the molecular mechanism of muscle contraction and motor protein dynamics.
Collapse
Affiliation(s)
- Hyok Yoo
- Department
of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Ekaterina Nagornyak
- Department
of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Ronnie Das
- Department
of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Adam D. Wexler
- Wetsus
Center for Sustainable Water Technology, Agora 1, 8900CC Leeuwarden, The Netherlands
| | - Gerald H. Pollack
- Department
of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|