1
|
Fukushima T, Gupta S, Rad B, Cornejo JA, Petzold CJ, Chan LJG, Mizrahi RA, Ralston CY, Ajo-Franklin CM. The Molecular Basis for Binding of an Electron Transfer Protein to a Metal Oxide Surface. J Am Chem Soc 2017; 139:12647-12654. [DOI: 10.1021/jacs.7b06560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tatsuya Fukushima
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sayan Gupta
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Behzad Rad
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jose A. Cornejo
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leanne Jade G. Chan
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rena A. Mizrahi
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Corie Y. Ralston
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M. Ajo-Franklin
- Molecular Foundry, Molecular
Biophysics and Integrated Biosciences, and Biological Systems and
Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
3
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|