1
|
Coindre VF, Carleton MM, Sefton MV. Methacrylic Acid Copolymer Coating Enhances Constructive Remodeling of Polypropylene Mesh by Increasing the Vascular Response. Adv Healthc Mater 2019; 8:e1900667. [PMID: 31407481 DOI: 10.1002/adhm.201900667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Indexed: 12/11/2022]
Abstract
This study reports that a methacrylic acid (MAA)-based copolymer coating generates constructive remodeling of polypropylene (PP) surgical mesh in a subcutaneous model. This coating is non-bioresorbable and follows the architecture of the mesh without impeding connective tissue integration. Following implantation, the tissue response is biased toward vascularization instead of fibrosis. The vessel density around the MAA mesh is double that of the uncoated mesh two weeks after implantation. This initial vasculature regresses after two weeks while mature vessels remain, suggesting an enhanced healing response. Concurrently, the MAA coating alters the foreign body response to the mesh. Fewer infiltrating cells, macrophages, and foreign body giant cells are found at the tissue-material interface three weeks after implantation. The coating also dampens inflammation, with lower expression levels of pro-inflammatory and fibrogenic signals (e.g., Tgf-β1, Tnf-α, and Il1-β) and similar expression levels of anti-inflammatory cytokines (e.g., Il10 and Il6) compared to the uncoated mesh. Contrary to other coatings that aim to mitigate the foreign body response to PP mesh, a MAA coating does not require the addition of any biological agents to have an effect, making the coated mesh an attractive candidate for soft tissue repair.
Collapse
Affiliation(s)
- Virginie F. Coindre
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 160 College Street, Suite 406 Toronto Ontario M5S 3G9 Canada
| | - Miranda M. Carleton
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 160 College Street, Suite 406 Toronto Ontario M5S 3G9 Canada
| | - Michael V. Sefton
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 160 College Street, Suite 406 Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 160 College Street, Suite 406 Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
2
|
|
3
|
Prudente A, Favaro WJ, Latuf P, Riccetto CLZ. Host inflammatory response to polypropylene implants: insights from a quantitative immunohistochemical and birefringence analysis in a rat subcutaneous model. Int Braz J Urol 2017; 42:585-93. [PMID: 27286125 PMCID: PMC4920579 DOI: 10.1590/s1677-5538.ibju.2015.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 01/22/2023] Open
Abstract
Objectives To describe acute and sub acute aspects of histological and immunohistochemical response to PP implant in a rat subcutaneous model based on objective methods. Materials and Methods Thirty rats had a PP mesh subcutaneously implanted and the same dissection on the other side of abdomen but without mesh (sham). The animals were euthanized after 4 and 30 days. Six slides were prepared using the tissue removed: one stained with hematoxylin-eosin (inflammation assessment); one unstained (birefringence evaluation) and four slides for immunohistochemical processing: IL-1 and TNF-α (pro-inflammatory cytokines), MMP-2 (collagen metabolism) and CD-31 (angiogenesis). The area of inflammation, the birefringence index, the area of immunoreactivity and the number of vessels were objectively measured. Results A larger area of inflammatory reaction was observed in PP compared to sham on the 4th and on the 30th day (p=0.0002). After 4 days, PP presented higher TNF (p=0.0001) immunoreactivity than sham and no differences were observed in MMP-2 (p=0.06) and IL-1 (p=0.08). After 30 days, a reduction of IL-1 (p=0.010) and TNF (p=0.016) for PP and of IL-1 (p=0.010) for sham were observed. Moreover, area of MMP-2 immunoreactivity decreased over time for PP group (p=0.018). Birefringence index and vessel counting showed no differences between PP and sham (p=0.27 and p=0.58, respectively). Conclusions The implantation of monofilament and macroporous polypropylene in the subcutaneous of rats resulted in increased inflammatory activity and higher TNF production in the early post implant phase. After 30 days, PP has similar cytokines immunoreactivity, vessel density and extracellular matrix organization.
Collapse
Affiliation(s)
- Alessandro Prudente
- Faculdade de Ciências Médicas da Universidade de Campinas, Campinas, SP, Brasil
| | | | - Paulo Latuf
- Laboratório de Investigação Patologica, Centro de Investigação em Pediatria,Universidade de Campinas, Campinas, SP, Brasil
| | | |
Collapse
|
4
|
Prudente A, Favaro WJ, Reis LO, Riccetto CLZ. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis. Int Urol Nephrol 2017; 49:597-605. [PMID: 28181115 DOI: 10.1007/s11255-017-1520-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/18/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To evaluate the effect of implanted S-nitrosoglutathione (GSNO) coating polypropylene mesh in foreign-body response of rats. METHODS Thirty female rats underwent to subcutaneous implant of five polypropylene (PP) fragments: uncoated PP (control); PP polyvinylalcohol (PVA) coated and PP PVA + GSNO (1, 10 and 70 mMol) coated. After euthanasia (4 and 30 days), eight slides were prepared from each animal: hematoxylin-eosin (inflammatory response); unstained (birefringence collagen evaluation); TUNEL technique (apoptosis); and five for immunohistochemical processing: CD-31 (angiogenesis), IL-1 and TNF-α (proinflammatory cytokynes), iNOS (NO synthesis) and MMP-2 (collagen metabolism). The inflammation area, birefringence index, apoptotic index, immunoreactivity and vessel density were objectively measured. RESULTS Inflammatory reaction area at 4 days was 11.3, 15.2, 25.1, 17.1 and 19.3% of pure PP, PVA, GSNO 1, 10 and 70 mM, respectively, p = 0.0006 (PP × Others). At 30 days lower inflammatory area was observed in GSNO 10 and 70 mM compared to pure PP (5.3, 5.2 and 11.1%, respectively, p = 0.0001). Vessel density was higher for GSNO 1 mM (25.5%) compared to pure PP (19.6%) at 30 days only, p = 0.0081. Apoptotic index at 4 days was lower for GSNO 1 mM (49.3%) than pure PVA (60.6%), p = 0.0124. GSNO 10 and 70 mM reduced their apoptotic index at 30 days compared to 4 days (49.9 vs. 36.9 and 59.1 vs. 47.5%, respectively, p = 0.0397). Birefringence index, IL-1, TNF, MMP-2 and iNOS were not different. CONCLUSIONS Depending on concentrations, GSNO can increase angiogenesis, reduce inflammation and apoptosis compared to pure PP, without impact on cytokine, collagen organization/metabolism and endogenous NO synthesis.
Collapse
Affiliation(s)
- Alessandro Prudente
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil. .,, 4405, Engenheiro Anysio da Rocha Compasso st, Porto Velho, Rondônia, 76821-331, Brazil.
| | - Wágner José Favaro
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Khalyfa A, Wang Y, Zhang SX, Qiao Z, Abdelkarim A, Gozal D. Sleep fragmentation in mice induces nicotinamide adenine dinucleotide phosphate oxidase 2-dependent mobilization, proliferation, and differentiation of adipocyte progenitors in visceral white adipose tissue. Sleep 2014; 37:999-1009. [PMID: 24790279 DOI: 10.5665/sleep.3678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic sleep fragmentation (SF) without sleep curtailment induces increased adiposity. However, it remains unclear whether mobilization, proliferation, and differentiation of adipocyte progenitors (APs) occurs in visceral white adipose tissue (VWAT), and whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2) activity plays a role. METHODS Changes in VWAT depot cell size and AP proliferation were assessed in wild-type and Nox2 null male mice exposed to SF and control sleep (SC). To assess mobilization, proliferation, and differentiation of bone marrow mesenchymal stem cells (BM-MSC), Sca-1+ bone marrow progenitors were isolated from GFP+ or RFP+ mice, and injected intravenously to adult male mice (C57BL/6) previously exposed to SF or SC. RESULTS In comparison with SC, SF was associated with increased weight accrual at 3 w and thereafter, larger subcutaneous and visceral fat depots, and overall adipocyte size at 8 w. Increased global AP numbers in VWAT along with enhanced AP BrDU labeling in vitro and in vivo emerged in SF. Systemic injections of GFP+ BM-MSC resulted in increased AP in VWAT, as well as in enhanced differentiation into adipocytes in SF-exposed mice. No differences occurred between SF and SC in Nox2 null mice for any of these measurements. CONCLUSIONS Chronic sleep fragmentation (SF) induces obesity in mice and increased proliferation and differentiation of adipocyte progenitors (AP) in visceral white adipose tissue (VWAT) that are mediated by increased Nox2 activity. In addition, enhanced migration of bone marrow mesenchymal stem cells from the systemic circulation into VWAT, along with AP differentiation, proliferation, and adipocyte formation occur in SF-exposed wild-type but not in oxidase 2 (Nox2) null mice. Thus, Nox2 may provide a therapeutic target to prevent obesity in the context of sleep disorders.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Yang Wang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Shelley X Zhang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Zhuanhong Qiao
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Amal Abdelkarim
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Fet N, Alizai PH, Fragoulis A, Wruck C, Pufe T, Tolba RH, Neumann UP, Klinge U. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models. Langenbecks Arch Surg 2014; 399:579-88. [DOI: 10.1007/s00423-014-1192-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
7
|
Sadava EE, Krpata DM, Gao Y, Rosen MJ, Novitsky YW. Wound healing process and mediators: Implications for modulations for hernia repair and mesh integration. J Biomed Mater Res A 2013; 102:295-302. [DOI: 10.1002/jbm.a.34676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Emmanuel E. Sadava
- Case Comprehensive Hernia Center; Department of Surgery; University Hospitals Case Medical Center; 11100 Euclid Avenue Cleveland Ohio 44106-5047
| | - David M. Krpata
- Case Comprehensive Hernia Center; Department of Surgery; University Hospitals Case Medical Center; 11100 Euclid Avenue Cleveland Ohio 44106-5047
| | - Yue Gao
- Case Comprehensive Hernia Center; Department of Surgery; University Hospitals Case Medical Center; 11100 Euclid Avenue Cleveland Ohio 44106-5047
| | - Michael J. Rosen
- Case Comprehensive Hernia Center; Department of Surgery; University Hospitals Case Medical Center; 11100 Euclid Avenue Cleveland Ohio 44106-5047
| | - Yuri W. Novitsky
- Case Comprehensive Hernia Center; Department of Surgery; University Hospitals Case Medical Center; 11100 Euclid Avenue Cleveland Ohio 44106-5047
| |
Collapse
|
8
|
de Morais Pereira LH, Pacheco Olegário JG, Rocha LP, de Oliveira Guimarães CS, Ramalho FS, dos Reis MA, Miranda Corrêa RR. Association between the markers of FIRS and the morphologic alterations in the liver of neonates autopsied in the perinatal period. Fetal Pediatr Pathol 2013; 31:48-54. [PMID: 22515549 DOI: 10.3109/15513815.2012.659536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Markers of fetal inflammatory response syndrome (FIRS) can influence the morphologic alterations in liver of autopsied neonates. The IL-6, TNF-α, and C-reactive protein (CRP) expression in liver fragments were marked by immunohistochemistry and the intensity of steatosis, percentage of fibrosis, and the number of foci of extramedullary erythropoiesis were evaluated. The degree of steatosis correlated positively with IL-6 (p = 0.06), positively with CRP (p ≤ 0.001), and negatively with TNF-α (p = 0.06). The collagen percentage correlated positively with IL-6 (p = 0.055) and positively with TNF-α (p ≤ 0.001). Erythropoiesis correlated positively with IL-6 (p ≤ 0.001) and negatively with CRP (p = 0.00754). The analyzed markers of FIRS have an important role in triggering hepatic morphologic alterations.
Collapse
|
9
|
Klink CD, Junge K, Binnebösel M, Alizai HP, Otto J, Neumann UP, Klinge U. Comparison of long-term biocompability of PVDF and PP meshes. J INVEST SURG 2012; 24:292-9. [PMID: 22047202 DOI: 10.3109/08941939.2011.589883] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Abdominal hernia repair is the most frequently performed operation in surgery. Mesh repair in hernia surgery has become an integral component. Although meshes made of PVDF are already in clinical use, so far no data of long-term biocompability are available. METHODS In this study a PVDF mesh was compared to a polypropylene mesh with regard to its long-term biocompatibility. A total of 28 rats were randomized to two groups. Mesh material was implanted subcutaneously; animals were euthanized seven days and six months postoperatively. The quantity of inflammatory tissue response was characterized by measuring the diameter of the foreign body granuloma. Furthermore quality of cellular immune response (T-lymphocytes, macrophages, and neutrophils), and inflammation (COX-2) was analyzed by immunohistochemistry. Furthermore the collagen type I/III ratio was determined. RESULTS Macrophages, T-lymphocytes, neutrophiles, and COX-2 declined significantly up to six months postoperatively in comparison to day 7 for both PVDF and PP meshes, and in both groups the collagen ratio increased significantly in the course of time. PVDF meshes showed a foreign body granuloma size significantly reduced compared to PP (7 days: 20 ± 2 μm vs. 27 ± 2 μm; 6 months 15 ± 2 μm vs. 22 ± 3 μm; p < .001). However no significant differences were found analyzing cellular response six months postoperatively. CONCLUSIONS Our current data suggest that even in the long-term course after six months and despite a higher effective surface of the PVDF samples it showed a smaller foreign body granuloma than with PP whereas the cellular response was similar.
Collapse
Affiliation(s)
- C D Klink
- Department of Surgery, RWTH Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Patel H, Ostergard DR, Sternschuss G. Polypropylene mesh and the host response. Int Urogynecol J 2012; 23:669-79. [PMID: 22430945 DOI: 10.1007/s00192-012-1718-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/09/2012] [Indexed: 11/30/2022]
Abstract
The use of polypropylene (PP) mesh for pelvic floor repair has been increasing dramatically over the past decade; however, tissue response in humans has not been extensively studied. This review discusses PP mesh and postimplantation host tissue response. Emphasis is placed on studies investigating the relationship between individual mesh properties and specific responses. There is an immediate inflammatory response after PP mesh implantation that lays the framework for tissue ingrowth and subsequent mesh integration. This response varies based on physical properties of individual mesh, such as pore size, weight, coatings, bacterial colonization, and biofilm production.
Collapse
Affiliation(s)
- Hiren Patel
- Long Beach Memorial Medical Center, Women's Hospital, Long Beach, CA 90806, USA.
| | | | | |
Collapse
|
11
|
Moretti AIS, Pinto FJPS, Cury V, Jurado MC, Marcondes W, Velasco IT, Souza HP. Nitric oxide modulates metalloproteinase-2, collagen deposition and adhesion rate after polypropylene mesh implantation in the intra-abdominal wall. Acta Biomater 2012; 8:108-15. [PMID: 21864729 DOI: 10.1016/j.actbio.2011.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023]
Abstract
Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1β (IL-1β) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P<0.05). Additionally, higher levels of IL-1β were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P<0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions.
Collapse
Affiliation(s)
- Ana I S Moretti
- Emergency Medicine Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Junge K, Binnebösel M, von Trotha KT, Rosch R, Klinge U, P. Neumann U, Lynen Jansen P. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbecks Arch Surg 2011; 397:255-70. [DOI: 10.1007/s00423-011-0780-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/08/2011] [Indexed: 12/22/2022]
|