1
|
Sharun K, Banu SA, El-Husseiny HM, Abualigah L, Pawde AM, Dhama K, Amarpal. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Connect Tissue Res 2024; 65:364-382. [PMID: 39246090 DOI: 10.1080/03008207.2024.2397657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Toukh, Elqaliobiya, Egypt
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Fuchu-shi, Japan
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, Saudi Arabia
- MEU Research Unit, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Ahmad Z, Mckee M. Editorial Commentary: Platelet-Rich Plasma for Rotator Cuff Repair Improves Retear Rate but Clinical Impact Is Yet to Be Seen. Arthroscopy 2024:S0749-8063(24)00510-3. [PMID: 39038500 DOI: 10.1016/j.arthro.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Rotator cuff tendon repair has a high failure rate due to the inferior quality of tendon material. Platelet-rich plasma (PRP) is considered a potential solution, although its clinical impact is uncertain. Recent literature indicates that while PRP may reduce retear rates radiologically, it does not significantly improve clinical outcomes such as pain and function. Early animal studies showed potential benefits, but initial clinical trials were inconclusive due to small sample sizes and varied PRP methods. Larger, recent studies suggest a possible benefit, yet definitive clinical advantages remain elusive. Advancing PRP research requires a dual approach: deeper understanding of tendon and PRP biology, as well as larger clinical trials focusing on specific PRP preparations and delivery methods. While current evidence is limited, PRP holds promise for improving rotator cuff repair outcomes, and ongoing research may eventually translate into significant clinical benefits.
Collapse
Affiliation(s)
- Zafar Ahmad
- University of Arizona College of Medicine-Phoenix
| | | |
Collapse
|
3
|
Walton RA, Liuzza L, Takawira C, Leonardi C, Lopez MJ. Biocomposite Anchors Have Greater Yield Load and Energy Compared With All-Suture Anchors in an In Vitro Ovine Infraspinatus Tendon Repair Model. Arthrosc Sports Med Rehabil 2024; 6:100938. [PMID: 39006783 PMCID: PMC11240035 DOI: 10.1016/j.asmr.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose To compare tensile fatigue and strength measures of biocomposite and all-suture anchors in an ovine humerus-infraspinatus tendon model of rotator cuff repair. Methods Infraspinatus tendons on adult ovine humeri were sharply transected at the insertion. One of each pair was assigned randomly for fixation with 2 biocomposite or all-suture anchors. Constructs were tested with 200 cycles of 20 to 70 N tensile load, and gap formation was measured at the incised tendon end every 50 cycles. They were subsequently tested to failure. Outcome measures including fatigue stiffness, hysteresis, creep, and gap formation and tensile stiffness, and yield and failure displacement, load, and energy were compared between anchors. Results Biocomposite anchors had greater yield load (134.1 ± 6.5 N, P < .01) and energy (228.6 ± 85.7 J, P < .03) than all-suture anchors (104.7 ± 6.5 N, 169.8 ± 85.7 J). Fatigue properties were not different between anchors, but stiffness and gap formation increased and hysteresis and creep decreased significantly with increasing cycle number. Conclusions Although the yield displacement of both anchors was within the range of clinical failure, the tensile yield load and energy of ovine infraspinatus tendons secured to the humerus with 2 single-loaded all-suture anchors in a single row were significantly lower than those secured with 2 biocomposite anchors in the same configuration. Clinical Relevance It is important to understand the biomechanical properties for selecting anchors for rotator cuff repair. A direct comparison of fatigue testing followed by failure strength of infraspinatus tendon fixation with all-suture and biocomposite anchors could help guide anchor selection and postoperative mobility recommendations.
Collapse
Affiliation(s)
- Robert A. Walton
- Laboratory for Equine and Comparative Orthopedic Research, Veterinary Clinical Sciences Department, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, U.S.A
| | - Lindsey Liuzza
- Department of Orthopaedics, Louisiana State University School of Medicine, New Orleans, Louisiana, U.S.A
| | - Catherine Takawira
- Laboratory for Equine and Comparative Orthopedic Research, Veterinary Clinical Sciences Department, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, U.S.A
| | - Claudia Leonardi
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, U.S.A
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Veterinary Clinical Sciences Department, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, U.S.A
| |
Collapse
|
4
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model. J Orthop Translat 2022; 35:62-71. [PMID: 36186661 PMCID: PMC9471965 DOI: 10.1016/j.jot.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Rotator cuff tear has become one of the diseases affecting people's living quality. Conventional anchor materials such as titanium alloy and poly-lactic acid can lead to postoperative complications like bone defects and aseptic inflammation. Magnesium (Mg)-based implants are biodegradable and biocompatible, with strong potential to be applied in orthopaedics. Methods In this study, we developed a high-purity (HP) Mg suture anchor and studied its mechanical properties and degradation behavior in vitro. Furthermore, we described the use of high-purity Mg to prepare suture anchor for the rotator cuff repair in sheep. Results The in vitro tests showed that HP Mg suture anchor possess proper degradation behavior and appropriate mechanical property. Animal experiment indicated that HP Mg suture anchor provided reliable anchoring function in 12 weeks and showed no toxic effect on animal organs. Conclusion In summary, the HP Mg anchor presented in this study had favorable mechanical property and biosecurity. The translational potential of this article: The translational potential of this article is to use high-purity Mg to develop a degradable suture anchor and verify the feasibility of the application in animal model. This study provides a basis for further research on the clinical application of biodegradable high-purity Mg suture anchor.
Collapse
|
6
|
Quantifying the magnitude of local tendon injury from electrosurgical transection. J Shoulder Elbow Surg 2022; 31:832-838. [PMID: 34582992 DOI: 10.1016/j.jse.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Electrocautery is a common surgical technique and is often used during shoulder arthroplasty to elevate or transect the subscapularis tendon. The relative amount of tissue damage caused by cautery as opposed to sharp transection is not currently known. The purpose of this study was to examine local tissue damage resulting from electrocautery vs. sharp transection with a scalpel. We hypothesized that the electrosurgical unit would cause higher collateral tissue damage and cell death compared with sharp transection. METHODS Twelve cadaveric ovine shoulders were randomized to either the electrosurgical or sharp transection group. The infraspinatus tendon was isolated, and a partial-thickness transection was made using either a monopolar electrosurgical device (Bovie) or No. 10 scalpel blade. Tendon explants were then visualized with confocal microscopy to evaluate tissue architecture. A live/dead assay was performed using microscopy imaging analysis software. Comparisons between Bovie and scalpel transection were made using the Mann-Whitney U test, and the cell death percentage at standardized distances from the transection site was compared between groups using a mixed-model analysis. Significance was defined at P < .05. RESULTS The cellular and tendon fibril architecture was well maintained beyond the scalpel transection site, whereas Bovie transection disrupted the architecture beyond its transection path. The percentage of dead cells in the Bovie group (74.9% ± 31.2%) was significantly higher than that in the scalpel group (27.6% ± 29.9%, P = .0004). Compared with the transection site, the cell death percentage after Bovie transection significantly declined at 2.5 mm whereas that after scalpel transection significantly declined at 1 mm from the transection site. CONCLUSION There was a significantly higher dead cell percentage in the Bovie transection group, indicating extensive damage beyond the local incision site, compared with sharp transection. Electrosurgical transection of the ovine infraspinatus tendon ex vivo caused higher cell death and greater tissue architecture disruption compared with sharp scalpel transection.
Collapse
|
7
|
Levin D. Bench to Bedside: Approaches for Engineered Intestine, Esophagus, and Colon. Gastroenterol Clin North Am 2019; 48:607-623. [PMID: 31668186 DOI: 10.1016/j.gtc.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The generation of tissue engineered organs from autologous cells will allow replacement of diseased or absent organs without the need for immunosuppression. Common steps of tissue engineering include isolation of pluripotent or multipotent stem cells, preparation of synthetic or biologic scaffold, and implantation into a host to support the proliferation of engineered tissue. Some organs have been successfully transplanted in human patients; gastrointestinal tract tissues are nearing clinical introduction. The state of the science has progressed rapidly and providers and researchers alike must take appropriate steps to ensure strict adherence to ethical standards before introduction to human therapy.
Collapse
Affiliation(s)
- Daniel Levin
- Division of Pediatric Surgery, Department of Surgery, University of Virginia, 1300 Jefferson Park Avenue, PO BOX 800709, Charlottesville, VA 22908-0709, USA.
| |
Collapse
|