1
|
Georgescu T. The role of maternal hormones in regulating autonomic functions during pregnancy. J Neuroendocrinol 2023; 35:e13348. [PMID: 37936545 DOI: 10.1111/jne.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Offspring development relies on numerous physiological changes that occur in a mother's body, with hormones driving many of these adaptations. Amongst these, the physiological functions controlled by the autonomic nervous system are required for the mother to survive and are adjusted to meet the demands of the growing foetus and to ensure a successful birth. The hormones oestrogen, progesterone, and lactogenic hormones rise significantly during pregnancy, suggesting they may also play a role in regulating the maternal adaptations linked to autonomic nervous system functions, including respiratory, cardiovascular, and thermoregulatory functions. Indeed, expression of pregnancy hormone receptors spans multiple brain regions known to regulate these physiological functions. This review examines how respiratory, cardiovascular, and thermoregulatory functions are controlled by these pregnancy hormones by focusing on their action on central nervous system circuits. Inadequate adaptations in these systems during pregnancy can give rise to several pregnancy complications, highlighting the importance in understanding the mechanistic underpinnings of these changes and potentially identifying ways to treat pregnancy-associated afflictions using hormones.
Collapse
Affiliation(s)
- T Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Hathaway QA, Nichols CE, Shepherd DL, Stapleton PA, McLaughlin SL, Stricker JC, Rellick SL, Pinti MV, Abukabda AB, McBride CR, Yi J, Stine SM, Nurkiewicz TR, Hollander JM. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol Heart Circ Physiol 2016; 312:H446-H458. [PMID: 28011589 PMCID: PMC5402018 DOI: 10.1152/ajpheart.00634.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Cody E Nichols
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Phoebe A Stapleton
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Sarah L McLaughlin
- Department of Cancer Cell Biology, West Virginia University School of Medicine; Morgantown, West Virginia; and
| | - Janelle C Stricker
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Seth M Stine
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; .,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
4
|
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015; 9:941-51. [PMID: 25475392 DOI: 10.3109/17435390.2014.984251] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Cody E Nichols
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Jinghai Yi
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Carroll R McBride
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Valerie C Minarchick
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Danielle L Shepherd
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| |
Collapse
|
5
|
Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 2013; 209:227.e1-11. [PMID: 23643573 DOI: 10.1016/j.ajog.2013.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/01/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. Although the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding "special" circulations is the enhanced maternal system to support fetal development. The Barker hypothesis proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was 2-fold: (1) to determine whether maternal ENM exposure alters uterine and/or fetal microvascular function and (2) test the Barker hypothesis at the microvascular level. STUDY DESIGN Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3 ± 0.039 mg/m(3)/hr, 5 hr/d, 8.2 ± 0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150 μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. RESULTS ENM exposures led to significant maternal and fetal microvascular dysfunction, which was seen as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment that impacted fetal weight. The fetal microvessels that were isolated from exposed dams demonstrated significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. CONCLUSION To our knowledge, this is the first report to provide evidence that maternal ENM inhalation is capable of influencing fetal health and that the Barker hypothesis is applicable at the microvascular level.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506-9105, USA
| | | | | | | | | | | |
Collapse
|
6
|
Yoon M, Nong A, Clewell HJ, Taylor MD, Dorman DC, Andersen ME. Evaluating placental transfer and tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures with a PBPK model. Toxicol Sci 2009; 112:44-58. [PMID: 19726578 DOI: 10.1093/toxsci/kfp198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A Physiologically Based Pharmaco Kinetic (PBPK) model, based on a published description of manganese (Mn) kinetics in adult rats, has been developed to describe Mn uptake and tissue distribution in the pregnant dam and fetus during dietary and inhalation exposures. This extension incorporated key physiological processes controlling Mn pharmacokinetics during pregnancy and fetal development. After calibration against tissue Mn concentrations observed during late gestation, the model accurately simulated Mn tissue distribution in the dam and fetus following both diet and inhalation exposures to the pregnant rat. Maternal to fetal transfer of Mn through placenta was described using two pathways: a saturable active transport with high affinity and a simple diffusion. The active transport dominates at basal and lower Mn exposure, whereas at higher Mn exposure, the relative contribution of the diffusion pathway increases. To simulate fetal tissue Mn, tissue-binding parameters and preferential influx/efflux rates in fetal brain were adjusted from the adult model based on differential developmental processes and varying tissue demands for Mn in early life. Model simulations were consistent with observed tissue Mn concentrations in fetal tissues, including brain for diet alone and for combined diet and inhalation. Simulations of Mn in placenta and other maternal tissues in late gestation correlated well with measured tissue concentrations. This model, together with our published models for Mn kinetics during lactation and postnatal development, will help to address concerns about Mn neurotoxicity in potentially sensitive human subpopulation, such as infants and children by providing an estimate of Mn exposure in the population of interest.
Collapse
Affiliation(s)
- Miyoung Yoon
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|