1
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
2
|
Wang S, Dang H, Xu F, Deng J, Zheng X. The Wnt7b/β-catenin signaling pathway is involved in the protective action of calcitonin gene-related peptide on hyperoxia-induced lung injury in premature rats. Cell Mol Biol Lett 2018; 23:4. [PMID: 29416550 PMCID: PMC5785828 DOI: 10.1186/s11658-018-0071-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) can protect against hyperoxia-induced lung injury, making the upregulation of CGRP a potential therapeutic approach for this type of injury. However, the effects of CGRP on the Wnt7b/β-catenin signaling pathway are unclear. In this study, we investigated the roles of CGRP and the Wnt7b/β-catenin signaling pathway in hyperoxia-induced lung injury. Methods Premature Sprague Dawley (SD) rats were exposed to 21, 40, 60 and 95% oxygen for 3, 7 and 14 days. The animals’ body weights, survival rates and endogenous CGRP levels were measured. Lung samples were harvested for histological analyses and measurements of malondialdehyde (MDA) concentration and total antioxidant capacity (TAOC). We also assessed the MDA concentration and TAOC in the lung tissues after administration of 200 nmol/kg CGRP8–37 (a CGRP antagonist). Finally, alveolar epithelial type II (AEC II) cells were isolated from premature rats, exposed to 21 or 95% oxygen for 3, 7 and 14 days, and treated with 10− 8 mol/l exogenous CGRP. The protein expressions of Wnt7b and β-catenin were assessed using western blotting, and TCF and c-myc mRNA expressions were assessed using qPCR. Results Rats exposed to 60 and 95% oxygen had significantly lower body weights and survival rates than the 21 and 40% groups, and the decrease was time dependent. Endogenous CGRP was elevated in the lung tissues of premature rats exposed to 95% oxygen. CGRP8–37 induced apparent inflammation in the lung tissue and alveolar structural remodeling. In addition, the expression levels of Wnt7b and β-catenin were markedly increased after exposure for 3 days. They peaked at 7 days, then declined at 14 days. The levels of TCF/c-myc in AEC II cells increased significantly after CGRP treatment when compared with cells that had only undergone hyperoxia. Conclusions CGRP protected against hyperoxia-induced lung injury in premature rats. This process involves the Wnt7b/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shaohua Wang
- 1Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Jintian South Road No. 2002, Futian district, Shen Zhen, 518045 China
| | - Hongxing Dang
- 2Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yu Zhong, Chongqing, 400014 China
| | - Feng Xu
- 2Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yu Zhong, Chongqing, 400014 China
| | - Jian Deng
- 1Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Jintian South Road No. 2002, Futian district, Shen Zhen, 518045 China
| | - Xuemei Zheng
- 1Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Jintian South Road No. 2002, Futian district, Shen Zhen, 518045 China
| |
Collapse
|
3
|
Li XW, Li XH, Du J, Li D, Li YJ, Hu CP. Calcitonin gene-related peptide down-regulates bleomycin-induced pulmonary fibrosis. Can J Physiol Pharmacol 2016; 94:1315-1324. [PMID: 27556497 DOI: 10.1139/cjpp-2015-0602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway. Whether ERK1/2 - eIF3a signal pathway is involved in calcitonin gene-related peptide (CGRP)-mediated pathogenesis of bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. Sensory CGRP depletion by capsaicin exacerbated bleomycin-induced pulmonary fibrosis in rats, as shown by a significant disturbed alveolar structure, marked thickening of the interalveolar septa and dense interstitial infiltration by inflammatory cells and fibroblasts, accompanied with increased expression of TGF-β1, eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. Exogenous application of CGRP significantly inhibited TGF-β1-induced proliferation and differentiation of pulmonary fibroblasts concomitantly with decreased expression of eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. These effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that endogenous CGRP is related to the development of pulmonary fibrosis induced by bleomycin, and the inhibitory effect of CGRP on proliferation of lung fibroblasts involves the ERK1/2 - eIF3a signaling pathway.
Collapse
Affiliation(s)
- Xian-Wei Li
- a Department of Pharmacology, Wannan Medical College, Wen-Chang West Road #22, Wuhu, Anhui 241002, China
| | - Xiao-Hui Li
- b Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha, Hunan 410078, China
| | - Jie Du
- b Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha, Hunan 410078, China
| | - Dai Li
- b Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha, Hunan 410078, China
| | - Yuan-Jian Li
- b Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha, Hunan 410078, China
| | - Chang-Ping Hu
- b Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #110, Changsha, Hunan 410078, China
| |
Collapse
|
4
|
Chu M, Ji X, Chen W, Zhang R, Sun C, Wang T, Luo C, Gong J, Zhu M, Fan J, Hou Z, Dai J, Jin G, Wu T, Chen F, Hu Z, Ni C, Shen H. A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Hum Mol Genet 2014; 23:6385-94. [DOI: 10.1093/hmg/ddu333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Kadoya C, Ogami A, Morimoto Y, Myojo T, Oyabu T, Nishi K, Yamamoto M, Todoroki M, Tanaka I. Analysis of bronchoalveolar lavage fluid adhering to lung surfactant. Experiment on intratracheal instillation of nickel oxide with different diameters. INDUSTRIAL HEALTH 2011; 50:31-36. [PMID: 22146143 DOI: 10.2486/indhealth.ms1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nickel oxide with two different particle sizes, micron size (NiO) and submicron size (nNiOm), as well as crystalline silica as a positive control and titanium dioxide as a negative control, were intratracheally instilled in rats and the phospholipid concentration and the protein concentration and surface tension of bronchoalveolar lavage fluid (BALF), which are used in surfactant assessment, were measured to see if they could be effective biomarkers in toxicity assessment. The results showed that the NiO instilled group showed no significant difference compared to the control group throughout the observation period. In contrast, a significant difference was found in the nNiOm instilled group compared to the control group throughout the observation period. Moreover, a significant difference was found in the crystalline silica instilled group for each measurement compared to the control group while for the titanium dioxide group, almost no significant difference was found. These results indicate that submicronsized particles of nickel oxide with smaller median diameters potentially have a stronger biological effect than micron size particles. They also indicate that screening can be done by measuring the phospholipid concentration and the protein concentration and surface tension of BALF.
Collapse
Affiliation(s)
- Chikara Kadoya
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kawanami Y, Morimoto Y, Kim H, Nakamura T, Machida K, Kido T, Asonuma E, Yatera K, Yoshii C, Kido M. Calcitonin gene-related peptide stimulates proliferation of alveolar epithelial cells. Respir Res 2009; 10:8. [PMID: 19192276 PMCID: PMC2651852 DOI: 10.1186/1465-9921-10-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 02/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alveolar epithelial cells are known as progenitor cells for the restoration from the damage in the lung. Calcitonin gene-related peptide (CGRP) has been reported to play an important role in the proliferation of various types of epithelial and endothelial cells. We investigated the effects of CGRP on the proliferation of alveolar epithelial cells in vitro and in vivo. METHODS A549 cells were cultured in Dulbecco Modified Eagle Medium with 5% fatal bovin serum for 24 hours, then CGRP was added in vitro. The proliferation of DNA synthesis was measured using 5-bromo-2-deoxyuridine, an analog of thymidine, by enzyme-linked immunosorbent assay.As one intracellular response to CGRP, we examined activation of p44/42- extracellular signal-regulated kinase (ERK) pathway by adding CGRP, using western blotting method.Recombinant adenovirus encoding nuclear-targeted-human beta-CGRP (rhCGRP) was administered into Male Wister rat (n = 5, 10 weeks old) lungs by intratracheal instillation in vivo. 7 days after the administration of CGRP, rat lungs were harvested and histological findings and immunohistochemical staining of proliferating cell nuclear antigen (PCNA) were evaluated to examine cell proliferation. RESULTS In vitro study, CGRP increased the proliferation of A549 cells in a dose and time dependent manner. CGRP8-37 (inhibitor of CGRP receptor) decreased CGRP induced proliferation of DNA synthesis. Phosphorylation of ERK pathway was observed within 15 minutes and peaked in one hour. U0126 (inhibitor of ERK pathway) decreased CGRP induced proliferation of DNA synthesis.In vivo study, histological examination of the lung indicated proliferation of alveolar epithelial cells in the rhCGRP-treated group and the nuclei of alveolar epithelial cells were positive for PCNA immunostaining. CONCLUSION In this study, we conclude that CGRP stimulates proliferation of human alveolar epithelial cells in vivo and in vitro.
Collapse
Affiliation(s)
- Yukiko Kawanami
- Department of Respiratory Disease, University of Occupational and Environmental Health, Japan, Kitakyushu City, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kido T, Morimoto Y, Asonuma E, Yatera K, Ogami A, Oyabu T, Tanaka I, Kido M. Chrysotile Asbestos Causes AEC Apoptosis via the Caspase ActivationIn VitroandIn Vivo. Inhal Toxicol 2008; 20:339-47. [DOI: 10.1080/08958370701866362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|