1
|
Wang M, Wei J, Shang F, Zang K, Ji T. Platelet-derived growth factor B attenuates lethal sepsis through inhibition of inflammatory responses. Int Immunopharmacol 2019; 75:105792. [PMID: 31386981 DOI: 10.1016/j.intimp.2019.105792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Sepsis is a systemic inflammatory response during infection and remains a major clinical problem with high morbidity and mortality. Platelet-derived growth factor B (PDGF-B) is a member belongs to PDGF family and has been recently reported higher expressed in survivors of severe sepsis patients. However, the exact role and underlying mechanisms of PDGF-BB in sepsis remains unclear. In this study, we found that PDGF-BB levels were significantly elevated in patients with sepsis, and higher PDGF-BB levels were negatively correlated with the levels of proinflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8), and chemokines (CXCL-1 and CCL2). PDGF-BB was also found increased in experimental sepsis in mice. Blockade of PDGF-BB using Tyrphostin AG 1296 aggravated, whereas recombinant PDGF-BB treatment improved survival and tissues injury in both two murine models of CLP-induced sepsis and LPS- induced endotoxemia. PDGF-BB blockade increased, whereas PDGF-BB administration decreased the inflammatory responses, as reflected by proinflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8), and chemokines (CXCL-1 and CCL2). PDGF-BB also showed inhibitory effect on immune cell activation and cytokines production in vivo and in vitro. Therefore, our findings suggest that PDGF-BB plays a protective role in sepsis by decreasing the production of pro-inflammatory cytokines and chemokines. PDGF-BB thus may be a potential therapeutic strategy for treating sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Intensive Care Unit, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China.
| | - Jilou Wei
- Department of Intensive Care Unit, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Futai Shang
- Department of Intensive Care Unit, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Kui Zang
- Department of Intensive Care Unit, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Ting Ji
- Department of Intensive Care Unit, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| |
Collapse
|
2
|
Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019; 197:361-369. [PMID: 31028466 DOI: 10.1007/s00408-019-00228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.
Collapse
|
3
|
Zeng H, He X, Tuo QH, Liao DF, Zhang GQ, Chen JX. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways. Sci Rep 2016; 6:20931. [PMID: 26868537 PMCID: PMC4751495 DOI: 10.1038/srep20931] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiopoietins/Tie-2, pericyte/endothelial (EC) coverage and vascular permeability were assessed. Mice treated with LPS significantly reduced the expression of SIRT3, HIF-2α and Notch3 in the lung. Furthermore, exposure to LPS increased Ang-2 while inhibited Ang-1/Tie-2 expression with a reduced pericyte/EC coverage. Intriguingly, knockout of Sirt3 upregulated Ang-2, but downregulated Tie-2 and HIF-2α/Notch3 expression which resulted in a dramatic reduction of pericyte/EC coverage and exacerbation of LPS-induced vascular leakage. Conversely, overexpression of Sirt3 reduced Ang-2 expression and increased Ang-1/Tie-2 and HIF-2α/Notch3 expression in the LPS treated mice. Overexpression of Sirt3 further prevented LPS-induced pericyte loss and vascular leakage. This was accompanied by a significant reduction of the mortality rate. Specific knockout of prolyl hydroxylase-2 (PHD2) increased HIF-2α/Notch3 expression, improved pericyte/EC coverage and reduced the mortality rate in the LPS-treated mice. Our study demonstrates the importance of SIRT3 in preserving vascular integrity by targeting pericytes in the setting of LPS-induced sepsis.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Qin-Hui Tuo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
4
|
van den Elsen LWJ, Noakes PS, van der Maarel MA, Kremmyda LS, Vlachava M, Diaper ND, Miles EA, Eussen SRBM, Garssen J, Willemsen LEM, Wilson SJ, Godfrey KM, Calder PC. Salmon consumption by pregnant women reduces ex vivo umbilical cord endothelial cell activation. Am J Clin Nutr 2011; 94:1418-25. [PMID: 22011457 DOI: 10.3945/ajcn.111.016592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In vitro exposure of endothelial cells (ECs) to n-3 (omega-3) long-chain PUFAs (LCPUFAs) reduces cell adhesion molecule (CAM) expression. However, to our knowledge, no previous human studies have examined the influence of an altered diet on CAM expression. OBJECTIVE We assessed whether salmon (rich in n-3 LCPUFAs) consumption twice a week during pregnancy affected offspring umbilical vein EC CAM expression. DESIGN Women were randomly assigned to maintain their habitual diets or to consume 2 portions of salmon per week during pregnancy months 4-9. ECs were isolated from umbilical cord veins collected at birth and cultured. The cell surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was assessed by flow cytometry after the culture of ECs in the presence and absence of bacterial LPS for 24 h. Cytokine and growth factor concentrations in culture supernatant fluid were measured by using a multiplex assay. RESULTS LPS increased the expression of VCAM-1 and the production of several cytokines and growth factors. The level of ICAM-1 expression per cell [ie, the median fluorescence intensity (MFI)] was increased by LPS stimulation in the control group (16.9 ± 2.4 compared with 135.3 ± 20.2; P < 0.001) and to a lesser extent in the salmon group (14.1 ± 3.8 compared with 65.8 ± 22.4; P = 0.037). The ICAM-1 MFI in the salmon group after LPS stimulation was lower than in the control group (P = 0.006). CONCLUSION Increased dietary salmon intake in pregnancy dampens offspring EC activation, which implicates a role for n-3 LCPUFAs in the suppression of inflammatory processes in humans. This trial was registered at clinicaltrials.gov as NCT00801502.
Collapse
Affiliation(s)
- Lieke W J van den Elsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers 2011; 16 Suppl 1:S11-21. [PMID: 21707440 DOI: 10.3109/1354750x.2011.587893] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endothelial integrity, as mechanical barrier against microorganisms and as natural "anticoagulant", is crucial for physiologic organ function. Systemic activation of the endothelium upon inflammation, sepsis, and septic shock is always ending in blood-tissue barrier disruption. With increasing dysfunction, uncontrolled clotting activation, capillary microthrombi formation, tissue edema, local hypoxia, and ischemia are initiated. This in turn enhances a vicious circle leading to multiple organ failure and death. Therefore, biomarkers reflecting this special compartment may help in the early detection of systemic inflammation and its complications. This review provides an overview of the most important endothelial biomarkers and their possible use in sepsis.
Collapse
Affiliation(s)
- Patrick Paulus
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany.
| | | | | |
Collapse
|
6
|
Palu A, Su C, Zhou BN, West B, Jensen J. Wound healing effects of noni (Morinda citrifolia L.) leaves: a mechanism involving its PDGF/A2A receptor ligand binding and promotion of wound closure. Phytother Res 2011; 24:1437-41. [PMID: 20878690 DOI: 10.1002/ptr.3150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Morinda citrifolia L. (Rubiaceae) commonly known as noni, has been used in Polynesia by traditional healers for the treatment of cuts, bruises and wounds. Our objective was to investigate the wound-healing mechanisms of the noni leaf. The investigations of its wound-healing mechanisms were carried out using fresh noni leaf juice (NLJ), noni leaf ethanol extract (NLEE) and its methanol (MFEE) and hexane (HFEE) fractions on the PDGF and A(2A) receptors in vitro and topically in mice. Fresh noni leaf juice showed significant affinity to PDGF receptors, and displayed 166% binding inhibition of the ligand binding to its receptors, while at the same concentration, it only had 7% inhibition of the ligand binding to the A(2A) receptors. NLEE, HFEE and MFEE showed significant affinity to A(2A) receptors, concentration dependently, with IC(50) values of 34.1, 42.9 and 86.7 μg/mL, respectively. However, MFEE significantly increased wound closure and reduced the half closure time in mice with a CT(50) of 5.4 ± 0.2 days compared with control (p < 0.05). These results suggest that noni leaf significantly accelerated wound healing in mice via its ligand binding to the PDGF and A(2A) receptors as its probable mechanisms of wound-healing and also support its traditional usage for wound-healing in Polynesia.
Collapse
Affiliation(s)
- Afa Palu
- Tahitian Noni International, R&D, American Fork, Utah, USA.
| | | | | | | | | |
Collapse
|
7
|
Mankhambo LA, Banda DL, Jeffers G, White SA, Balmer P, Nkhoma S, Phiri H, Molyneux EM, Hart CA, Molyneux ME, Heyderman RS, Carrol ED. The role of angiogenic factors in predicting clinical outcome in severe bacterial infection in Malawian children. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R91. [PMID: 20492647 PMCID: PMC2911728 DOI: 10.1186/cc9025] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/26/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022]
Abstract
Introduction Severe sepsis is a disease of the microcirculation, with endothelial dysfunction playing a key role in its pathogenesis and subsequent associated mortality. Angiogenesis in damaged small vessels may ameliorate this dysfunction. The aim of the study was to determine whether the angiogenic factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and angiopoietin-1 (Ang-1) and -2 (Ang-2)) are mortality indicators in Malawian children with severe bacterial infection. Methods In 293 children with severe bacterial infection, plasma VEGF, PDGF, FGF, and Ang-1 and Ang-2 were measured on admission; in 50 of the children with meningitis, VEGF, PDGF, and FGF were also measured in the CSF. Healthy controls comprised children from some of the villages of the index cases. Univariable and multivariable logistic regression analyses were performed to develop a prognostic model. Results The median age was 2.4 years, and the IQR, 0.7 to 6.0 years. There were 211 children with bacterial meningitis (72%) and 82 (28%) with pneumonia, and 154 (53%) children were HIV infected. Mean VEGF, PDGF, and FGF concentrations were higher in survivors than in nonsurvivors, but only PDGF remained significantly increased in multivariate analysis (P = 0.007). Mean Ang-1 was significantly increased, and Ang-2 was significantly decreased in survivors compared with nonsurvivors (6,000 versus 3,900 pg/ml, P = 0.03; and 7,700 versus 11,900 pg/ml, P = 0.02, respectively). With a logistic regression model and controlling for confounding factors, only female sex (OR, 3.95; 95% CI, 1.33 to 11.76) and low Ang-1 (OR, 0.23; 95% CI, 0.08 to 0.69) were significantly associated with mortality. In children with bacterial meningitis, mean CSF VEGF, PDGF, and FGF concentrations were higher than paired plasma concentrations, and mean CSF, VEGF, and FGF concentrations were higher in nonsurvivors than in survivors (P = 0.02 and 0.001, respectively). Conclusions Lower plasma VEGF, PDGF, FGF, and Ang-1 concentrations and higher Ang-2 concentrations are associated with an unfavorable outcome in children with severe bacterial infection. These angiogenic factors may be important in the endothelial dysregulation seen in severe bacterial infection, and they could be used as biomarkers for the early identification of patients at risk of a poor outcome.
Collapse
Affiliation(s)
- Limangeni A Mankhambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pierrakos C, Vincent JL. Sepsis biomarkers: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R15. [PMID: 20144219 PMCID: PMC2875530 DOI: 10.1186/cc8872] [Citation(s) in RCA: 852] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 12/28/2009] [Accepted: 02/09/2010] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Biomarkers can be useful for identifying or ruling out sepsis, identifying patients who may benefit from specific therapies or assessing the response to therapy. METHODS We used an electronic search of the PubMed database using the key words "sepsis" and "biomarker" to identify clinical and experimental studies which evaluated a biomarker in sepsis. RESULTS The search retrieved 3370 references covering 178 different biomarkers. CONCLUSIONS Many biomarkers have been evaluated for use in sepsis. Most of the biomarkers had been tested clinically, primarily as prognostic markers in sepsis; relatively few have been used for diagnosis. None has sufficient specificity or sensitivity to be routinely employed in clinical practice. PCT and CRP have been most widely used, but even these have limited ability to distinguish sepsis from other inflammatory conditions or to predict outcome.
Collapse
Affiliation(s)
- Charalampos Pierrakos
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, route de Lennik 808, 1070 Brussels, Belgium.
| | | |
Collapse
|
9
|
Neyrinck AP, Liu KD, Howard JP, Matthay MA. Protective mechanisms of activated protein C in severe inflammatory disorders. Br J Pharmacol 2009; 158:1034-47. [PMID: 19466992 DOI: 10.1111/j.1476-5381.2009.00251.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protein C system is an important natural anticoagulant mechanism mediated by activated protein C (APC) that regulates the activity of factors VIIIa and Va. Besides well-defined anticoagulant properties, APC also demonstrates anti-inflammatory, anti-apoptotic and endothelial barrier-stabilizing effects that are collectively referred to as the cytoprotective effects of APC. Many of these beneficial effects are mediated through its co-receptor endothelial protein C receptor, and the protease-activated receptor 1, although exact mechanisms remain unclear and are likely pleiotropic in nature. Increased insight into the structure-function relationships of APC facilitated design of APC variants that conserve cytoprotective effects and reduce anticoagulant features, thereby attenuating the risk of severe bleeding with APC therapy. Impairment of the protein C system plays an important role in acute lung injury/acute respiratory distress syndrome and severe sepsis. The pathophysiology of both diseases states involves uncontrolled inflammation, enhanced coagulation and compromised fibrinolysis. This leads to microvascular thrombosis and organ injury. Administration of recombinant human APC to correct the dysregulated protein C system reduced mortality in severe sepsis patients (PROWESS trial), which stimulated further research into its mechanisms of action. Several other clinical trials evaluating recombinant human APC have been completed, including studies in children and less severely ill adults with sepsis as well as a study in acute lung injury. On the whole, these studies have not supported the use of APC in these populations and challenge the field of APC research to search for additional answers.
Collapse
Affiliation(s)
- Arne P Neyrinck
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|