1
|
The Effect of Bone Morphogenetic Protein-2 on the Irradiated Allogenic Cartilage of Rats. J Craniofac Surg 2021; 32:774-777. [PMID: 33705034 DOI: 10.1097/scs.0000000000006837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Autogenous cartilage graft is associated with the problem of chondrocyte dedifferentiation. Bone morphogenetic protein-2 (BMP-2) plays an important role in the differentiation and matrix maturation of chondrocytes, and preventing their dedifferentiation.This study was performed on 48 rats, divided equally into 3 groups. In group I, the xiphoid process cartilage was harvested and irradiated, and broken into 2 pieces. Each piece was implanted on the back. The same process was performed in Groups II and III, but further treated with BMP-2, Group II with 25 μg, and Group III with 50 μg. The implanted cartilage pieces were reharvested at postoperative weeks 2 and 4. The weight change was measured and histological evaluation was performed.The extent of the weight change was higher in Groups II and III than in Group I. The extracellular matrix between the chondrocytes showed increased in Groups II and III. The fibrous tissue on the surface of the cartilage increased in Groups II and III. Ossification of the chondrocytes was observed in Groups II and III.The use of BMP-2 increased the matrix between chondrocytes and the fibrous tissue of the cartilage and facilitated the ossification of chondrocytes. The effect of BMP-2 increased with its increasing concentration, and maintenance of its effectiveness over time was confirmed.
Collapse
|
2
|
Dufour A, Lafont JE, Buffier M, Verset M, Cohendet A, Contamin H, Confais J, Sankar S, Rioult M, Perrier-Groult E, Mallein-Gerin F. Repair of full-thickness articular cartilage defects using IEIK13 self-assembling peptide hydrogel in a non-human primate model. Sci Rep 2021; 11:4560. [PMID: 33633122 PMCID: PMC7907267 DOI: 10.1038/s41598-021-83208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Articular cartilage is built by chondrocytes which become less active with age. This declining function of the chondrocytes, together with the avascular nature of the cartilage, impedes the spontaneous healing of chondral injuries. These lesions can progress to more serious degenerative articular conditions as in the case of osteoarthritis. As no efficient cure for cartilage lesions exist yet, cartilage tissue engineering has emerged as a promising method aiming at repairing joint defects and restoring articular function. In the present work, we investigated if a new self-assembling peptide (referred as IEIK13), combined with articular chondrocytes treated with a chondrogenic cocktail (BMP-2, insulin and T3, designated BIT) could be efficient to restore full-thickness cartilage defects induced in the femoral condyles of a non-human primate model, the cynomolgus monkey. First, in vitro molecular studies indicated that IEIK13 was efficient to support production of cartilage by monkey articular chondrocytes treated with BIT. In vivo, cartilage implant integration was monitored non-invasively by contrast-enhanced micro-computed tomography, and then by post-mortem histological analysis and immunohistochemical staining of the condyles collected 3 months post-implantation. Our results revealed that the full-thickness cartilage injuries treated with either IEIK13 implants loaded with or devoid of chondrocytes showed similar cartilage-characteristic regeneration. This pilot study demonstrates that IEIK13 can be used as a valuable scaffold to support the in vitro activity of articular chondrocytes and the repair of articular cartilage defects, when implanted alone or with chondrocytes.
Collapse
Affiliation(s)
- Alexandre Dufour
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Jérôme E Lafont
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | - Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France.
| |
Collapse
|
3
|
Chondrogenic Differentiation from Induced Pluripotent Stem Cells Using Non-Viral Minicircle Vectors. Cells 2020; 9:cells9030582. [PMID: 32121522 PMCID: PMC7140457 DOI: 10.3390/cells9030582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently, chondrogenesis using human pluripotent stem cells (hiPSCs) is accomplished using human recombinant growth factors. Here, we differentiate hiPSCs into chondrogenic pellets using minicircle vectors. Minicircles are a non-viral gene delivery system that can produce growth factors without integration into the host genome. We generated minicircle vectors containing bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 3 (TGFβ3) and delivered them to mesenchymal stem cell-like, hiPSC-derived outgrowth (OG) cells. Cell pellets generated using minicircle-transfected OG cells successfully differentiated into the chondrogenic lineage. The implanted minicircle-based chondrogenic pellets recovered the osteochondral defects in rat models. This work is a proof-of-concept study that describes the potential application of minicircle vectors in cartilage regeneration using hiPSCs.
Collapse
|
4
|
Liu Z, Chen S, Yang Y, Lu S, Zhao X, Hu B, Pei H. MicroRNA‑671‑3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes. Mol Med Rep 2019; 20:2843-2850. [PMID: 31322228 DOI: 10.3892/mmr.2019.10488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and joint inflammation. A previous study showed that microRNA (miR)‑671‑3p is involved in the development of OA, however, its function and molecular target in chondrocytes during the pathogenesis of OA remain to be fully elucidated. In the present study, miR‑671‑3p was significantly downregulated in knee OA cartilage tissues compared with normal cartilage tissues. The expression levels of pro‑inflammatory cytokines, including interleukin (IL)‑1β, IL‑6, IL‑8 and tumor necrosis factor (TNF)‑α, in the knee OA cartilage tissues were significantly higher than those in the normal cartilage tissues. Through gain‑of‑function and loss‑of‑function experiments, miR‑671‑3p was shown to significantly affect matrix synthesis gene expression, cell proliferation, apoptosis and inflammation in chondrocytes from patients with OA. Subsequent bioinformatics analysis identified potential target sites of the miR‑671‑3p located in the 3'untranslated region of TNF receptor‑associated factor (TRAF3). The results of a dual‑luciferase reporter assay showed that TRAF3 is a target gene of miR‑671‑3p. Western blot analysis demonstrated that miR‑671‑3p inhibited the gene expression of TRAF3. Furthermore, the restoration of TRAF3 markedly abrogated the effect of miR‑671‑3p. Taken together, the present study suggests that miR‑671‑3p may be important in the pathogenesis of OA through targeting TRAF3 and regulating chondrocyte apoptosis and inflammation, which may be a potential molecular target for OA treatment.
Collapse
Affiliation(s)
- Zhengjie Liu
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Shunguang Chen
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Yezi Yang
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Shengjun Lu
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Xunming Zhao
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Biao Hu
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Hong Pei
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
5
|
Perrier-Groult E, Pérès E, Pasdeloup M, Gazzolo L, Duc Dodon M, Mallein-Gerin F. Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice. PLoS One 2019; 14:e0217183. [PMID: 31107916 PMCID: PMC6527235 DOI: 10.1371/journal.pone.0217183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage (AC) has poor capacities of regeneration and lesions often lead to osteoarthritis. Current AC reconstruction implies autologous chondrocyte implantation which requires tissue sampling and grafting. An alternative approach would be to use scaffolds containing off-the-shelf allogeneic human articular chondrocytes (HACs). To investigate tolerance of allogeneic HACs by the human immune system, we developed a humanized mouse model implanted with allogeneic cartilage constructs generated in vitro. A prerequisite of the study was to identify a scaffold that would not provoke inflammatory reaction in host. Therefore, we first compared the response of hu-mice to two biomaterials used in regenerative medicine, collagen sponge and agarose hydrogel. Four weeks after implantation in hu-mice, acellular collagen sponges, but not acellular agarose hydrogels, showed positive staining for CD3 (T lymphocytes) and CD68 (macrophages), suggesting that collagen scaffold elicits weak inflammatory reaction. These data led us to deepen our evaluation of the biocompatibility of allogeneic tissue-engineered cartilage by using agarose as scaffold. Agarose hydrogels were combined with allogeneic HACs to reconstruct cartilage in vitro. Particular attention was paid to HLA-A2 compatibility between HACs to be grafted and immune human cells of hu-mice: HLA-A2+ or HLA-A2- HACs agarose hydrogels were cultured in the presence of a chondrogenic cocktail and implanted in HLA-A2+ hu-mice. After four weeks implantation and regardless of the HLA-A2 phenotype, chondrocytes were well-differentiated and produced cartilage matrix in agarose. In addition, no sign of T-cell or macrophage infiltration was seen in the cartilaginous constructs and no significant increase in subpopulations of T lymphocytes and monocytes was detected in peripheral blood and spleen. We show for the first time that humanized mouse represents a useful model to investigate human immune responsiveness to tissue-engineered cartilage and our data together indicate that allogeneic cartilage constructs can be suitable for cartilage engineering.
Collapse
Affiliation(s)
- Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
- * E-mail:
| | - Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| |
Collapse
|
6
|
Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage 2018; 26:264-275. [PMID: 29169959 DOI: 10.1016/j.joca.2017.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The application of adjunctive mediators in Autologous chondrocyte implantation (ACI) techniques might be useful for improving the dedifferentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage destruction. In this study we examined if (a) interleukin 10 treatment can cause chondrogenic phenotype stabilization and matrix preservation in mechanically injured cartilage and if (b) IL-10 can promote chondrogenesis in a clinically applied collagen scaffold for ACI treatment. MATERIALS AND METHODS For (a) bovine articular cartilage was harvested, subjected to an axial unconfined injury and treated with bovine IL-10 (1-10,000 pg/ng/ml). For (b) a post-operatively remaining ACI graft was treated with human IL-10. Expression levels of type I/II/X collagen, SOX9 and aggrecan were measured by qPCR (a,b). After 3 weeks cell death was analyzed (nuclear blebbing and TUNEL assay) and matrix composition was determined by GAG measurements and immunohistochemistry (aggrecan, type I/II collagen, hyaluronic acid). STATISTICS One way ANOVA analysis with Bonferroni's correction. RESULTS (a) IL-10 stabilized the chondrogenic phenotype after injurious compression and preserved matrix integrity. This was indicated by elevated expression of chondrogenic markers COL2A1, ACAN, SOX9, while COL1A1 and COL10A1 were reduced. An increased GAG content paralleled this and histological staining of type 2 collagen, aggrecan and toluidine blue were enhanced after 3 weeks. (b) IL-10 [100 pg/ml] improved the chondrogenic differentiation of human chondrocytes, which was accompanied by cartilaginous matrix formation after 3 weeks of incubation. CONCLUSION Interleukin-10 is a versatile adjuvant candidate to control the post-injurious environment in cartilage defects and promote chondrogenesis in ACI grafts.
Collapse
|
7
|
Akbari P, Waldman SD, Propst EJ, Cushing SL, Weber JF, Yeger H, Farhat WA. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro. Tissue Eng Part C Methods 2017; 22:1077-1084. [PMID: 27829311 DOI: 10.1089/ten.tec.2016.0223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional methods of cartilage tissue engineering rely on the use of scaffolds. Although successful chondrogenesis has been reported in scaffold-based constructs, the use of exogenous materials has limited their application due to eliciting host immunogenic responses and potentially resulting in construct failure. As a result, tissue engineering approaches, which aim to generate scaffold-free cartilaginous constructs, have become of particular interest. Here, we generated stable three-dimensional scaffold-free cartilaginous constructs by cultivating expanded pediatric nasal chondrocyte multilayers in a slow turning lateral vessel bioreactor system under chemically defined media. Bioreactor cultivation resulted in increased construct cellularity, fourfold tissue thickness, and 200% sulfated glycosaminoglycan deposition with respect to static culture equivalent cultures. These improvements led to significantly enhanced mechanical and biochemical properties of bioreactor-cultivated constructs, allowing them to support their own weight, while static culture constructs remained fragile. Consequently, bioreactor-cultivated constructs closely resembled native nasal cartilage tissue histologically, mechanically, and biochemically. We propose that this method of cartilage construct formation could be used to obtain readily available human scaffold-free cartilaginous constructs.
Collapse
Affiliation(s)
- Pedram Akbari
- 1 Program in Developmental and Stem Cell Biology, Research Institute , Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen D Waldman
- 2 Department of Chemical Engineering, Ryerson University , Toronto, Ontario, Canada .,3 Institute for Biomedical Engineering, Science and Technology, Ryerson University and St. Michael's Hospital , Toronto, Ontario, Canada
| | - Evan J Propst
- 4 Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - Sharon L Cushing
- 4 Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - Joanna F Weber
- 3 Institute for Biomedical Engineering, Science and Technology, Ryerson University and St. Michael's Hospital , Toronto, Ontario, Canada
| | - Herman Yeger
- 1 Program in Developmental and Stem Cell Biology, Research Institute , Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walid A Farhat
- 1 Program in Developmental and Stem Cell Biology, Research Institute , Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
8
|
RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation. Int J Mol Sci 2017; 18:ijms18091842. [PMID: 28837082 PMCID: PMC5618491 DOI: 10.3390/ijms18091842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/29/2022] Open
Abstract
As in humans, osteoarthritis (OA) causes considerable economic loss to the equine industry. New hopes for cartilage repair have emerged with the matrix-associated autologous chondrocyte implantation (MACI). Nevertheless, its limitation is due to the dedifferentiation occurring during the chondrocyte amplification phase, leading to the loss of its capacity to produce a hyaline extracellular matrix (ECM). To enhance the MACI therapy efficiency, we have developed a strategy for chondrocyte redifferentiation, and demonstrated its feasibility in the equine model. Thus, to mimic the cartilage microenvironment, the equine dedifferentiated chondrocytes were cultured in type I/III collagen sponges for 7 days under hypoxia in the presence of BMP-2. In addition, chondrocytes were transfected by siRNA targeting Col1a1 and Htra1 mRNAs, which are overexpressed during dedifferentiation and OA. To investigate the quality of the neo-synthesized ECM, specific and atypical cartilage markers were evaluated by RT-qPCR and Western blot. Our results show that the combination of 3D hypoxia cell culture, BMP-2 (Bone morphogenetic protein-2), and RNA interference, increases the chondrocytes functional indexes (Col2a1/Col1a1, Acan/Col1a1), leading to an effective chondrocyte redifferentiation. These data represent a proof of concept for this process of application, in vitro, in the equine model, and will lead to the improvement of the MACI efficiency for cartilage tissue engineering therapy in preclinical/clinical trials, both in equine and human medicine.
Collapse
|
9
|
Zhou B, Li H, Shi J. miR-27 inhibits the NF-κB signaling pathway by targeting leptin in osteoarthritic chondrocytes. Int J Mol Med 2017. [DOI: 10.3892/ijmm.2017.3021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Mayer N, Lopa S, Talò G, Lovati AB, Pasdeloup M, Riboldi SA, Moretti M, Mallein-Gerin F. Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges. PLoS One 2016; 11:e0161479. [PMID: 27584727 PMCID: PMC5008682 DOI: 10.1371/journal.pone.0161479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/06/2016] [Indexed: 01/17/2023] Open
Abstract
Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage.
Collapse
Affiliation(s)
- Nathalie Mayer
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, Université Claude Bernard-Lyon 1 and University of Lyon, Institute for Biology and Chemistry of Proteins, Lyon, France
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, Université Claude Bernard-Lyon 1 and University of Lyon, Institute for Biology and Chemistry of Proteins, Lyon, France
| | | | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
- Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, Université Claude Bernard-Lyon 1 and University of Lyon, Institute for Biology and Chemistry of Proteins, Lyon, France
- * E-mail:
| |
Collapse
|
11
|
Gu R, Liu N, Luo S, Huang W, Zha Z, Yang J. MicroRNA-9 regulates the development of knee osteoarthritis through the NF-kappaB1 pathway in chondrocytes. Medicine (Baltimore) 2016; 95:e4315. [PMID: 27603333 PMCID: PMC5023855 DOI: 10.1097/md.0000000000004315] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been suggested that microRNA-9 (miR-9) is associated with the development of knee osteoarthritis (OA). This study was aimed to investigate the association between the mechanism of miR-9 targeting nuclear factor kappa-B1 (NF-κB1) and the proliferation and apoptosis of knee OA chondrocytes.Cartilage samples were collected from 25 patients with knee OA and 10 traumatic amputees, and another 15 OA rat models, together with 15 rats without knee OA lesions were also established. MiR-9 expressions in both knee OA cartilage and normal cartilage samples were detected using quantitative real-time PCR. The expressions of related genes (NF-κB1, IL-6, and MMP-13) in the two groups were also detected. Dual luciferase reporter gene assay was employed to examine the effect of miR-9 on the luciferase activity of NF-κB1 3'UTR. Knee OA chondrocytes were transfected with miR-9 mimics, miR-9 inhibitor, and NF-κB1 siRNA, respectively, and changes in cellular proliferation and apoptosis were detected via MTT assay and flow cytometric analysis, respectively. Western blotting assay was used to detect the expressions of NF-κB1, interleukin-6 (IL-6), and matrix metalloproteinase-13 (MMP-13).According to results from human OA samples and rat OA models, miR-9 was significantly downregulated in knee OA cartilage tissues compared with normal cartilage tissues (P < 0.01). The expressions of NF-κB1, IL-6, and MMP-13 in knee OA cartilage tissues were significantly higher than those in normal cartilage tissues (P < 0.01). Dual luciferase reporter gene assay showed that miR-9 could bind to the 3'UTR of NF-κB1 and significantly inhibit the luciferase activity by 37% (P < 0.01). Upregulation of miR-9 or downregulation of NF-κB1 could promote cell proliferation and suppress cell apoptosis.Conclusively, downregulated miR-9 can facilitate proliferation and antiapoptosis of knee OA chondrocytes by directly binding to NF-kB1, implying that stimulating miR-9 expressions might assist in treatment of knee OA.
Collapse
Affiliation(s)
- Ronghe Gu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Ning Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou
| | - Simin Luo
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou
| | - Weiguo Huang
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Zhengang Zha
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou
- Correspondence: Zhengang Zha, Department of Orthopedics, The First Affiliated Hospital of Jinan University, No. 601 Huangpu Road West, Tianhe District, Guangzhou 5120632, China (e-mail: )
| | - Jie Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou
| |
Collapse
|
12
|
Lafont JE, Poujade FA, Pasdeloup M, Neyret P, Mallein-Gerin F. Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Osteoarthritis Cartilage 2016; 24:856-67. [PMID: 26708156 DOI: 10.1016/j.joca.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/02/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Since the biological effect of cartilage mediators is generally studied in a non-physiologic environment of 21% O2, we investigated the effects of a chronic hypoxia on the capability of articular chondrocytes to respond to one anabolic stimulation. DESIGN Human Articular Chondrocytes (HACs) were cultured under hypoxia and stimulated with the chondrogenic growth factor BMP-2. The phenotype of the chondrocytes was studied by RT-PCR, and the cartilage-specific type II collagen production and deposition were also examined by western immunoblot and immunofluorescence. The Bone Morphogenetic protein (BMP) signalling pathway was also analysed. RESULTS BMP-2 is much more efficient to stimulate the expression of the cartilage-specific gene COL2A1 by HACs when cultured under hypoxia (1%O2) compared to normoxia (21%O2). Analysis of the BMP-activated signalling shows that the Smad pathway is inhibited under hypoxia, whereas p38 MAPK is activated, and is involved in a synergy between hypoxia and BMP signalling, thus contributing to the enhanced anabolic response. CONCLUSIONS Our study shows that hypoxia interplays with a chondrogenic factor and enhances the overall anabolic activity of the HACs. Alternatively to Hypoxia-Inducible Factor (HIF) signalling, and through a cross-talk with the BMP signalling which involves the p38 pathway, hypoxic stimulation markedly increases the capability of chondrocytes to produce the cartilage-specific type II collagen. Therefore our study provides new evidences of the multilayered effects of hypoxia in the anabolic functions of chondrocytes. This understanding may help promoting the anabolic function of articular chondrocytes, and thus improving their manipulation for cell therapy.
Collapse
Affiliation(s)
- J E Lafont
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France.
| | - F-A Poujade
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - M Pasdeloup
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - P Neyret
- Orthopaedic Surgery Department, Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - F Mallein-Gerin
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| |
Collapse
|
13
|
Activin A/BMP2 chimera AB235 drives efficient redifferentiation of long term cultured autologous chondrocytes. Sci Rep 2015; 5:16400. [PMID: 26563344 PMCID: PMC4643338 DOI: 10.1038/srep16400] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) depends on the quality and quantity of implanted cells and is hindered by the fact that chondrocytes cultured for long periods of time undergo dedifferentiation. Here we have developed a reproducible and efficient chondrogenic protocol to redifferentiate chondrocytes isolated from osteoarthritis (OA) patients. We used morphological, histological and immunological analysis together with a RT-PCR detection of collagen I and collagen II gene expression to show that chondrocytes isolated from articular cartilage biopsies of patients and subjected to long-term culture undergo dedifferentiation and that these cells can be redifferentiated following treatment with the chimeric Activin A/BMP2 ligand AB235. Examination of AB235-treated cell pellets in both in vitro and in vivo experiments revealed that redifferentiated chondrocytes synthesized a cartilage-specific extracellular matrix (ECM), primarily consisting of vertically-orientated collagen fibres and cartilage-specific proteoglycans. AB235-treated cell pellets also integrated into the surrounding subcutaneous tissue following transplantation in mice as demonstrated by their dramatic increase in size while non-treated control pellets disintegrated upon transplantation. Thus, our findings describe an effective protocol for the promotion of redifferentiation of autologous chondrocytes obtained from OA patients and the formation of a cartilage-like ECM that can integrate into the surrounding tissue in vivo.
Collapse
|
14
|
Durbec M, Mayer N, Vertu-Ciolino D, Disant F, Mallein-Gerin F, Perrier-Groult E. [Reconstruction of nasal cartilage defects using a tissue engineering technique based on combination of high-density polyethylene and hydrogel]. ACTA ACUST UNITED AC 2014; 62:137-45. [PMID: 24745344 DOI: 10.1016/j.patbio.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/07/2014] [Indexed: 11/24/2022]
Abstract
AIM OF THE STUDY Nasal reconstruction remains a challenge for any surgeon. The surgical indications for nasal reconstruction after oncologic resection, trauma or as part of cosmetic rhinoplasty, are steadily increasing. The current attitude for reconstruction is the use of autologous cartilage grafts of various origins (septal, ear or rib) trying to restore a physiological anatomy but their quantity is limited. Thus, in order to produce an implantable cartilaginous model, we developed a study protocol involving human nasal chondrocytes, growth factors and a composite biomaterial and studied at the molecular, cellular and tissue level the phenotype of the chondrocytes cultured in this model. MATERIALS AND METHODS After extraction of chondrocytes and their amplification on plastic, the cells were cultured for 15 days either in monolayer or within an agarose hydrogel or a composite biomaterial (agarose/high density polyethylene: Medpor(®)) in the presence or not of a cocktail of soluble factors (BIT): bone morphogenetic protein-2 (BMP-2), insulin and triiodothyronine (T3). The quality of the chondrocyte phenotype was analyzed by PCR, western blotting and immunohistochemistry. RESULTS During their amplification in monolayer, chondrocytes dedifferentiate. However, our results show that the BIT cocktail induces redifferentiation of chondrocytes cultured in agarose/Medpor with synthesis of mature chondrogenic markers. Thereby, chondrocytes associated with the agarose hydrogel will colonize Medpor and synthesize an extracellular matrix characteristic of nasal cartilage. CONCLUSION This nasal cartilage tissue engineering protocol provides the first interesting results for nasal reconstruction.
Collapse
Affiliation(s)
- M Durbec
- Service d'oto-rhino-laryngologie et chirurgie cervico-maxillo-faciale, hospices civils de Lyon, hôpital Édouard-Herriot, 3, place d'Arsonval, 69007 Lyon cedex, France
| | - N Mayer
- CNRS UMR5305, institut de biologie et chimie des protéines, 7, passage du Vercors, 69367 Lyon cedex 07, France
| | - D Vertu-Ciolino
- Service d'oto-rhino-laryngologie et chirurgie cervico-maxillo-faciale, hospices civils de Lyon, hôpital Édouard-Herriot, 3, place d'Arsonval, 69007 Lyon cedex, France
| | - F Disant
- Service d'oto-rhino-laryngologie et chirurgie cervico-maxillo-faciale, hospices civils de Lyon, hôpital Édouard-Herriot, 3, place d'Arsonval, 69007 Lyon cedex, France
| | - F Mallein-Gerin
- CNRS UMR5305, institut de biologie et chimie des protéines, 7, passage du Vercors, 69367 Lyon cedex 07, France
| | - E Perrier-Groult
- CNRS UMR5305, institut de biologie et chimie des protéines, 7, passage du Vercors, 69367 Lyon cedex 07, France.
| |
Collapse
|
15
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
16
|
Aubert-Foucher E, Mayer N, Pasdeloup M, Pagnon A, Hartmann D, Mallein-Gerin F. A unique tool to selectively detect the chondrogenic IIB form of human type II procollagen protein. Matrix Biol 2013; 34:80-8. [PMID: 24055103 DOI: 10.1016/j.matbio.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Type II collagen, the major fibrillar collagen of cartilage, is synthesized as precursor forms (procollagens) containing N- and C-terminal propeptides. Three splice variants are thought to be translated to produce procollagen II isoforms (IIA/D and IIB) which differ in their amino propeptide parts. The IIA and IID are transient embryonic isoforms that include an additional cysteine-rich domain encoded by exon 2. The IIA and IID transcripts are co-expressed during chondrogenesis then decline and the IIB isoform is the only one expressed and synthesized in fully differentiated chondrocytes. Additionally, procollagens IIA/D can be re-expressed by dedifferentiating chondrocytes and in osteoarthritic cartilage. Therefore, it is an important point to determine which isoform(s) is (are) synthesized in vivo in normal and pathological situations and in vitro, to fully assess the phenotype of cells producing type II collagen protein. Antibodies directed against the cysteine-rich extra domain found in procollagens IIA and IID are already available but antibodies detecting only the chondrogenic IIB form of type II procollagen were missing so far. A synthetic peptide encompassing the junction between exon 1 and exon 3 of the human sequence was used as immunogen to produce rabbit polyclonal antibodies to procollagen IIB. After affinity purification on immobilized peptide their absence of crossreaction with procollagens IIA/D and with the fibrillar procollagens I, III and V was demonstrated by Western blotting. These antibodies were used to reveal at the protein level that the treatment of dedifferentiated human chondrocytes by bone morphogenic protein (BMP)-2 induces the synthesis of the IIB (chondrocytic) isoform of procollagen II. In addition, immunohistochemical staining of bovine cartilage demonstrates the potential of these antibodies in the analysis of the differential spatiotemporal distribution of N-propeptides of procollagens IIA/D and IIB during normal development and in pathological situations.
Collapse
Affiliation(s)
- Elisabeth Aubert-Foucher
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305-LBTI: Laboratoire de Biologie Tissulaire et Ingénierie thérapeuthique, IBCP, 7 passage du Vercors, F69367 Lyon, France
| | - Nathalie Mayer
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305-LBTI: Laboratoire de Biologie Tissulaire et Ingénierie thérapeuthique, IBCP, 7 passage du Vercors, F69367 Lyon, France
| | - Marielle Pasdeloup
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305-LBTI: Laboratoire de Biologie Tissulaire et Ingénierie thérapeuthique, IBCP, 7 passage du Vercors, F69367 Lyon, France
| | | | - Daniel Hartmann
- UCBL 1/ISPB, Faculté de Pharmacie, UMR CNRS 5510/MATEIS, Equipe I2B-"Interactions Biologiques et Biomatériaux", 8 avenue Rockefeller, F69373 Lyon, Cedex 08, France
| | - Frédéric Mallein-Gerin
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305-LBTI: Laboratoire de Biologie Tissulaire et Ingénierie thérapeuthique, IBCP, 7 passage du Vercors, F69367 Lyon, France.
| |
Collapse
|
17
|
MicroRNA-9 regulates survival of chondroblasts and cartilage integrity by targeting protogenin. Cell Commun Signal 2013; 11:66. [PMID: 24007463 PMCID: PMC3848287 DOI: 10.1186/1478-811x-11-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/23/2013] [Indexed: 12/03/2022] Open
Abstract
Background Studies have shown the roles of miR-9 and its validated target, protogenin (PRTG) in the differentiation of chondroblasts to chondrocyte and in the pathogenesis of osteoarthritis (OA). We hypothesized that miR-9 plays a distinct role in endochondral ossification and OA pathogenesis and the present study was undertaken to identify this role. In the studies, chondroblasts were isolated from limb bud of chick and mouse embryos and articular chondrocytes were isolated from rabbit and human cartilage. Osteoarthritic chondrocytes were isolated from cartilage from patients undergoing total knee replacement. Using these cells, we analyzed the changes in the expression of genes and proteins, tested the expression level of miR-9, and applied a target validation system. We also performed functional study of miR-9 and PRTG. Results With the progression of chondrogenesis, decreased miR-9 level was observed at the time of numerous apoptotic cell deaths. And chondrocytes isolated from normal human articular cartilage expressed miR-9, and this expression was significantly reduced in OA chondrocytes, especially decreased its expression in parallel with the degree of cartilage degradation. Over-expression of PRTG induced the activation of caspase-3 signaling and increased apoptosis. However, the co-treatment with the miR-9 precursor or PRTG-specific siRNA blocked this apoptotic signaling. Conclusion This study shows that PRTG is regulated by miR-9, plays an inhibitory action on survival of chondroblasts and articular chondrocytes during chondrogenesis and OA pathogenesis.
Collapse
|
18
|
Perrier-Groult E, Pasdeloup M, Malbouyres M, Galéra P, Mallein-Gerin F. Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage. Tissue Eng Part C Methods 2013; 19:652-64. [PMID: 23311625 DOI: 10.1089/ten.tec.2012.0396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because articular cartilage does not self-repair, tissue-engineering strategies should be considered to regenerate this tissue. Autologous chondrocyte implantation is already used for treatment of focal damage of articular cartilage. Unfortunately, this technique includes a step of cell amplification, which results in dedifferentiation of chondrocytes, with expression of type I collagen, a protein characteristic of fibrotic tissues. Therefore, the risk of producing a fibrocartilage exists. The aim of this study was to propose a new strategy for authorizing the recovery of the differentiated status of the chondrocytes after their amplification on plastic. Because the bone morphogenetic protein (BMP)-2 and the transforming growth factor (TGF)-β1 are cytokines both proposed as stimulants for cartilage repair, we undertook a detailed comparative analysis of their biological effects on chondrocytes. As a cellular model, we used mouse chondrocytes after their expansion on plastic and we tested the capability of BMP-2 or TGF-β1 to drive their redifferentiation, with special attention given to the nature of the proteins synthesized by the cells. To prevent any fibrotic character of the newly synthesized extracellular matrix, we silenced type I collagen by transfecting small interfering RNA (siRNA) into the chondrocytes, before their exposure to BMP-2 or TGF-β1. Our results showed that addition of siRNA targeting the mRNA encoded by the Col1a1 gene (Col1a1 siRNA) and BMP-2 represents the most efficient combination to control the production of cartilage-characteristic collagen proteins. To go one step further toward scaffold-based cartilage engineering, Col1a1 siRNA-transfected chondrocytes were encapsulated in agarose hydrogel and cultured in vitro for 1 week. The analysis of the chondrocyte-agarose constructs by using real-time polymerase chain reaction, Western-blotting, immunohistochemistry, and electron microscopy techniques demonstrated that the BMP-2/Col1a1 siRNA combination is effective in reinitializing correct production and assembly of the cartilage-characteristic matrix in agarose hydrogel, without production of type I collagen. Because agarose is known to favor long-term expression of the chondrocyte phenotype and agarose-based hydrogels are approved for clinical trials, this strategy appears very promising to repair hyaline cartilage.
Collapse
|
19
|
Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 2013; 19:550-67. [PMID: 23270543 DOI: 10.1089/ten.tec.2012.0508] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.
Collapse
Affiliation(s)
- Florence Legendre
- Laboratoire Microenvironnement Cellulaire et Pathologies, MILPAT, EA 4652, SFR ICORE 146, Université de Caen Basse-Normandie, UFR de Médecine, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. ACTA ACUST UNITED AC 2012; 60:199-207. [DOI: 10.1016/j.patbio.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
|
21
|
Freyria AM, Mallein-Gerin F. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 2012; 43:259-65. [PMID: 21696723 DOI: 10.1016/j.injury.2011.05.035] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
Articular cartilage is easily injured but difficult to repair and cell therapies are proposed as tools to regenerate the defects in the tissue. Both differentiated chondrocytes and adult mesenchymal stem cells (MSCs) are regarded as cells potentially able to restore a functional cartilage. However, it is a complex process from the cell level to the tissue end product, during which growth factors play important roles from cell proliferation, extracellular matrix synthesis, maintenance of the phenotype to induction of MSCs towards chondrogenesis. Members of the TGF-β superfamily, are especially important in fulfilling these roles. Depending on the cell type chosen to restore cartilage, the effect of growth factors will vary. In this review, the roles of these factors in the maintenance of the chondrocyte phenotype are discussed and compared with those of factors involved in the repair of cartilage defects, using chondrocytes or adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Anne-Marie Freyria
- Cartilage Biology and Engineering Group, IBCP, Université Lyon 1, Univ Lyon, CNRS FRE 3310, IFR128, France.
| | | |
Collapse
|
22
|
Claus S, Mayer N, Aubert-Foucher E, Chajra H, Perrier-Groult E, Lafont J, Piperno M, Damour O, Mallein-Gerin F. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges. Tissue Eng Part C Methods 2011; 18:104-12. [PMID: 21933021 DOI: 10.1089/ten.tec.2011.0259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Articular cartilage has a poor capacity for spontaneous repair. Tissue engineering approaches using biomaterials and chondrocytes offer hope for treatments. Our goal was to test whether collagen sponges could be used as scaffolds for reconstruction of cartilage with human articular chondrocytes. We investigated the effects on the nature and abundance of cartilage matrix produced of sequential addition of chosen soluble factors during cell amplification on plastic and cultivation in collagen scaffolds. DESIGN Isolated human articular chondrocytes were amplified for two passages with or without a cocktail of fibroblast growth factor (FGF)-2 and insulin (FI). The cells were then cultured in collagen sponges with or without a cocktail of bone morphogenetic protein (BMP)-2, insulin, and triiodothyronine (BIT). The constructs were cultivated for 36 days in vitro or for another 6-week period in a nude mouse-based contained-defect organ culture model. Gene expression was analyzed using polymerase chain reaction, and protein production was analyzed using Western-blotting and immunohistochemistry. RESULTS Dedifferentiation of chondrocytes occurred during cell expansion on plastic, and FI stimulated this dedifferentiation. We found that addition of BIT could trigger chondrocyte redifferentiation and cartilage-characteristic matrix production in the collagen sponges. The presence of FI during cell expansion increased the chondrocyte responsiveness to BIT.
Collapse
Affiliation(s)
- Stéphanie Claus
- Institut de Biologie et Chimie des Protéines, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells. Biotechnol Lett 2011; 33:2091-101. [DOI: 10.1007/s10529-011-0653-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
|
24
|
Claus S, Aubert-Foucher E, Perrier-Groult E, Bougault C, Ronzière MC, Freyria AM, Legendre F, Ollitrault D, Boumediene K, Demoor M, Galera P, Tian T, Flajollet S, Duterque-Coquillaud M, Damour O, Chajra H, Mallein-Gerin F. Décryptage des signalisations moléculaires contrôlant la différenciation des chondrocytes : retombées pour l’ingénierie tissulaire du cartilage : le projet ANR-TecSan PROMOCART. Ing Rech Biomed 2011. [DOI: 10.1016/j.irbm.2011.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Claus S, Aubert-Foucher E, Demoor M, Camuzeaux B, Paumier A, Piperno M, Damour O, Duterque-Coquillaud M, Galéra P, Mallein-Gerin F. Chronic exposure of bone morphogenetic protein-2 favors chondrogenic expression in human articular chondrocytes amplified in monolayer cultures. J Cell Biochem 2010; 111:1642-51. [DOI: 10.1002/jcb.22897] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Gouttenoire J, Bougault C, Aubert-Foucher E, Perrier E, Ronzière MC, Sandell L, Lundgren-Akerlund E, Mallein-Gerin F. BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol 2010; 89:307-14. [PMID: 20129696 DOI: 10.1016/j.ejcb.2009.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/28/2009] [Accepted: 10/29/2009] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université de Lyon, and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, Lyon F-69367, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Freyria AM, Ronzière MC, Cortial D, Galois L, Hartmann D, Herbage D, Mallein-Gerin F. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A 2009; 15:1233-45. [PMID: 18950259 DOI: 10.1089/ten.tea.2008.0114] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Among the existing repair strategies for cartilage injury, tissue engineering approach using biomaterials and chondrocytes offers hope for treatments. In this context, collagen-based biomaterials are good candidates as scaffolds for chondrocytes in cell transplantation procedures. These scaffolds are provided under different forms (gel or crosslinked sponge) made with either type I collagen or type I or type II atelocollagen molecules. The present study was undertaken to investigate how bovine articular chondrocytes sense and respond to differences in the structure and organization of these collagen scaffolds, over a 12-day culture period. When chondrocytes were seeded in the collagen scaffolds maintained in free-floating conditions, cells contracted gels to 40-60% and sponges to 15% of their original diameter. Real-time polymerase chain reaction analysis indicated that the chondrocyte phenotype, assessed notably by the ratio of COL2A1/COL1A2 mRNA and alpha10/alpha11 integrin subunit mRNA, was comparatively better sustained in type I collagen sponges when seeded at high cell density, also in type I atelocollagen gels. Besides, proteoglycan accumulation in the different scaffolds, as assessed by measuring the sulfated glycosaminoglycan content, was found be highest in type I collagen sponges seeded at high cell density. In addition, gene expression of matrix metalloproteinase-13 increased dramatically (up to 90-fold) in chondrocytes cultured in the different gels, whereas it remained stable in the sponges. Our data taken together reveal that type I collagen sponges seeded at high cell density represent a suitable material for tissue engineering of cartilage.
Collapse
Affiliation(s)
- Anne-Marie Freyria
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université de Lyon, IFR 128, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|