1
|
Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, Cabral WA, Hanson EP, Lange E, Cowen EW, Katz J, Roschger P, Klaushofer K, Dale RK, Siegel RM, Bhattacharyya T, Marini JC. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. J Exp Med 2020; 217:151599. [PMID: 32232430 PMCID: PMC7201932 DOI: 10.1084/jem.20191499] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical “dripping candle wax” melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-β pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation–positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-β pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-β/SMAD3 activation by BMP signaling in SMAD3 mutation–positive endosteal melorheostosis, which may guide future therapies.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.,Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Aleksandra Ivovic
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Eric P Hanson
- Immunodeficiency and Inflammation Unit, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Eileen Lange
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - James Katz
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy Bhattacharyya
- Section on Congenital Disorders, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Navarro R, Tapia‐Galisteo A, Martín‐García L, Tarín C, Corbacho C, Gómez‐López G, Sánchez‐Tirado E, Campuzano S, González‐Cortés A, Yáñez‐Sedeño P, Compte M, Álvarez‐Vallina L, Sanz L. TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol 2020; 14:2609-2628. [PMID: 32767843 PMCID: PMC7530788 DOI: 10.1002/1878-0261.12779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between cancer cells and the tumor microenvironment has been implicated in cancer progression and metastasis. Fibroblasts and immune cells are widely known to be attracted to and modified by cancer cells. However, the role of pericytes in the tumor microenvironment beyond endothelium stabilization is poorly understood. Here, we report that pericytes promoted colorectal cancer (CRC) cell proliferation, migration, invasion, stemness, and chemoresistance in vitro, as well as tumor growth in a xenograft CRC model. We demonstrate that coculture with human CRC cells induced broad transcriptomic changes in pericytes, mostly associated with TGF-β receptor activation. The prognostic value of a TGF-β response signature in pericytes was analyzed in CRC patient data sets. This signature was found to be a good predictor of CRC relapse. Moreover, in response to stimulation by CRC cells, pericytes expressed high levels of TGF-β1, initiating an autocrine activation loop. Investigation of secreted mediators and underlying molecular mechanisms revealed that IGFBP-3 is a key paracrine factor from activated pericytes affecting CRC cell migration and invasion. In summary, we demonstrate that the interplay between pericytes and CRC cells triggers a vicious cycle that stimulates pericyte cytokine secretion, in turn increasing CRC cell tumorigenic properties. Overall, we provide another example of how cancer cells can manipulate the tumor microenvironment.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Antonio Tapia‐Galisteo
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Laura Martín‐García
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Carlos Tarín
- Bioinformatics UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
- Basic Medical Sciences DepartmentFaculty of MedicineUniversidad San Pablo CEUMadridSpain
| | - Cesáreo Corbacho
- Pathology DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Gonzalo Gómez‐López
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Esther Sánchez‐Tirado
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Susana Campuzano
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Araceli González‐Cortés
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Paloma Yáñez‐Sedeño
- Department of Analytical ChemistryFaculty of ChemistryUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Marta Compte
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Luis Álvarez‐Vallina
- Immunotherapy and Cell Engineering LaboratoryDepartment of EngineeringAarhus UniversityAarhusDenmark
- Cancer Immunotherapy Unit (UNICA)Hospital Universitario 12 de OctubreMadridSpain
- Immuno‐oncology and Immunotherapy GroupBiomedical Research Institute 12 de OctubreMadridSpain
| | - Laura Sanz
- Molecular Immunology UnitBiomedical Research Institute Puerta de Hierro‐Segovia de AranaMadridSpain
| |
Collapse
|
3
|
Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Sawyer BT, Sullivan KD, Khanal S, Joshi M, Ferchaud-Roucher V, Smith H, Vanderlinden LA, Brubaker SW, Caino CM, Kim H, Espinosa JM, Richer JK, Bitler BG. Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. iScience 2019; 19:474-491. [PMID: 31437751 PMCID: PMC6710300 DOI: 10.1016/j.isci.2019.07.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) arise from exfoliation of transformed cells from the fallopian tube, indicating that survival in suspension, and potentially escape from anoikis, is required for dissemination. We report here the results of a multi-omic study to identify drivers of anoikis escape, including transcriptomic analysis, global non-targeted metabolomics, and a genome-wide CRISPR/Cas9 knockout (GeCKO) screen of HGSOC cells cultured in adherent and suspension settings. Our combined approach identified known pathways, including NOTCH signaling, as well as novel regulators of anoikis escape. Newly identified genes include effectors of fatty acid metabolism, ACADVL and ECHDC2, and an autophagy regulator, ULK1. Knockdown of these genes significantly inhibited suspension growth of HGSOC cells, and the metabolic profile confirmed the role of fatty acid metabolism in survival in suspension. Integration of our datasets identified an anoikis-escape gene signature that predicts overall survival in many carcinomas.
Collapse
Affiliation(s)
- Lindsay J Wheeler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Lubna Qamar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Tomomi M Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA
| | - Brandon T Sawyer
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Veronique Ferchaud-Roucher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harry Smith
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sky W Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cecilia M Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 E. 19(th) Avenue, MS 8613, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Zessner-Spitzenberg J, Thomas AL, Krett NL, Jung B. TGFβ and activin A in the tumor microenvironment in colorectal cancer. GENE REPORTS 2019; 17. [PMID: 32154442 DOI: 10.1016/j.genrep.2019.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although overall survival in colorectal cancer (CRC) is increasing steadily due to progress in screening, therapeutic options and precise diagnostic tools remain scarce. As the understanding of CRC as a complex and multifactorial condition moves forward, the tumor microenvironment has come into focus as a source of diagnostic markers and potential therapeutic targets. The role of TGFβ in shifting the epithelial cancer compartment towards invasiveness and a pro-migratory phenotype via stromal signaling has been widely investigated. Accordingly, recent studies have proposed that CRC patients could be stratified into distinct subtypes and have identified one poor prognosis subset of CRC that is characterized by high stromal activity and elevated levels of TGFβ. The TGFβ superfamily member activin A is crucial for the pro-metastatic properties of the TGFβ pathway, yet it has been under-researched in CRC carcinogenesis. In this review, we will elucidate the signaling network and interdependency of both ligands in the context of the tumor microenvironment in CRC.
Collapse
Affiliation(s)
- Jasmin Zessner-Spitzenberg
- Division of Gastroenterology and Hepatology, University of Illinois Medical College, Chicago, IL 60612, USA.,Medical University of Vienna, Spitalgasse 23, 1090 Wien, Austria
| | - Alexandra L Thomas
- Division of Gastroenterology and Hepatology, University of Illinois Medical College, Chicago, IL 60612, USA
| | - Nancy L Krett
- Division of Gastroenterology and Hepatology, University of Illinois Medical College, Chicago, IL 60612, USA
| | - Barbara Jung
- Division of Gastroenterology and Hepatology, University of Illinois Medical College, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Bizzarri M, Giuliani A, Pensotti A, Ratti E, Bertolaso M. Co-emergence and Collapse: The Mesoscopic Approach for Conceptualizing and Investigating the Functional Integration of Organisms. Front Physiol 2019; 10:924. [PMID: 31427981 PMCID: PMC6690009 DOI: 10.3389/fphys.2019.00924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
The fall of reductionist approaches to explanation leaves biology with an unescapable challenge: how to decipher complex systems. This entails a number of very critical questions, the most basic ones being: "What do we mean by 'complex'?" and "What is the system we should look for?" In complex systems, constraints belong to a higher level that the molecular one and their effect reduces and constrains the manifold of the accessible internal states of the system itself. Function is related but not deterministically imposed by the underlying structure. It is quite unlikely that such kind of complexity could be grasped by current approaches focusing on a single organization scale. The natural co-emergence of systems, parts and properties can be adopted as a hypothesis-free conceptual framework to understand functional integration of organisms, including their hierarchical or multilevel patterns, and including the way scientific practice proceeds in approaching such complexity. External, "driving" factors - order parameters and control parameters provided by the surrounding microenvironment - are always required to "push" the components' fate into well-defined developmental directions. In the negative, we see that in pathological processes such as cancer, organizational fluidity, collapse of levels and dynamic heterogeneity make it hard to even find a level of observation for a stable explanandum to persist in scientific practice. Parts and the system both lose their properties once the system is destabilized. The mesoscopic approach is our proposal to conceptualizing, investigating and explaining in biology. "Mesoscopic way of thinking" is increasingly popular in the epistemology of biology and corresponds to looking for an explanation (and possibly a prediction) where "non-trivial determinism is maximal": the "most microscopic" level of organization is not necessarily the place where "the most relevant facts do happen." A fundamental re-thinking of the concept of causality is also due for order parameters to be carefully and correctly identified. In the biological realm, entities have relational properties only, as they depend ontologically on the context they happen to be in. The basic idea of a relational ontology is that, in our inventory of the world, relations are somehow prior to the relata (i.e., entities).
Collapse
Affiliation(s)
- Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Emanuele Ratti
- Reilly Center for Science, Technology, and Values, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
6
|
Tüzmen Ş, Hostetter G, Watanabe A, Ekmekçi C, Carrigan PE, Shechter I, Kallioniemi O, Miller LJ, Mousses S. Characterization of farnesyl diphosphate farnesyl transferase 1 (FDFT1) expression in cancer. Per Med 2018; 16:51-65. [PMID: 30468409 DOI: 10.2217/pme-2016-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM To help characterize the FDFT1 gene and protein expression in cancer. Cholesterol represents an important structural component of lipid rafts. These specializations can be involved in pathways stimulating cell growth, survival and other processes active in cancer. This cellular compartment can be expanded by acquisition of cholesterol from the circulation or by its synthesis in a metabolic pathway regulated by the FDFT1 enzyme. Given the critical role this might play in carcinogenesis and in the behavior of cancers, we have examined the level of this enzyme in various types of human cancer. Our demonstration of elevated levels of FDFT1 mRNA and protein in some tumors relative to surrounding normal tissue identifies this as a possible biomarker for disease development and progression, and as a potential new target for the treatment of cancer.
Collapse
Affiliation(s)
- Şükrü Tüzmen
- Department of Biological Sciences, Molecular Biology & Genetics Program, Faculty of Arts & Sciences, Eastern Mediterranean University (EMU), Famagusta, North Cyprus via Mersin 10, 99628, Turkey.,Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Galen Hostetter
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Aprill Watanabe
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Cigna Medical Group, Texas Tech University, Phoenix, AZ, USA
| | - Cumhur Ekmekçi
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Patricia E Carrigan
- Cancer Center & Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA.,Bayer HealthCare, Berlin, Germany
| | - Ishaiahu Shechter
- Department of Surgery, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Olli Kallioniemi
- Medical Biotechnology Center, VTT Technical Research Centre of Finland & University of Turku, Turku, Finland
| | - Laurence J Miller
- Cancer Center & Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA
| | - Spyro Mousses
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Systems Oncology, Scottsdale, AZ 85260, USA
| |
Collapse
|
7
|
Santos AJM, Lo YH, Mah AT, Kuo CJ. The Intestinal Stem Cell Niche: Homeostasis and Adaptations. Trends Cell Biol 2018; 28:1062-1078. [PMID: 30195922 DOI: 10.1016/j.tcb.2018.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium is a rapidly renewing cellular compartment. This constant regeneration is a hallmark of intestinal homeostasis and requires a tightly regulated balance between intestinal stem cell (ISC) proliferation and differentiation. Since intestinal epithelial cells directly contact pathogenic environmental factors that continuously challenge their integrity, ISCs must also actively divide to facilitate regeneration and repair. Understanding niche adaptations that maintain ISC activity during homeostatic renewal and injury-induced intestinal regeneration is therefore a major and ongoing focus for stem cell biology. Here, we review recent concepts and propose an active interconversion of the ISC niche between homeostasis and injury-adaptive states that is superimposed upon an equally dynamic equilibrium between active and reserve ISC populations.
Collapse
Affiliation(s)
- António J M Santos
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
9
|
Lee J, Fricke F, Warnken U, Schnölzer M, Kopitz J, Gebert J. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells. PLoS One 2015; 10:e0131506. [PMID: 26114631 PMCID: PMC4484253 DOI: 10.1371/journal.pone.0131506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Although inactivating frameshift mutations in the Transforming growth factor beta receptor type 2 (TGFBR2) gene are considered as drivers of microsatellite unstable (MSI) colorectal tumorigenesis, consequential alterations of the downstream target proteome are not resolved completely. Applying a click-it chemistry protein labeling approach combined with mass spectrometry in a MSI colorectal cancer model cell line, we identified 21 de novo synthesized proteins differentially expressed upon reconstituted TGFBR2 expression. One candidate gene, the TGF-ß family member Growth differentiation factor-15 (GDF-15), exhibited TGFBR2-dependent transcriptional upregulation causing increased intracellular and extracellular protein levels. As a new TGFBR2 target gene it may provide a link between the TGF-ß branch and the BMP/GDF branch of SMAD-mediated signaling.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cancer Early Detection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Chen WP, Liu YH, Ho YJ, Wu SM. Pharmacological inhibition of TGFβ receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovasc Res 2014; 105:44-54. [PMID: 25362681 DOI: 10.1093/cvr/cvu229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Our previous study found that A83-01, a small molecule type 1 TGFβ receptor inhibitor, could induce proliferation of postnatal Nkx2.5(+) cardiomyoblasts in vitro and enhance their cardiomyogenic differentiation. The present study addresses whether A83-01 treatment in vivo could increase cardiomyogenesis and improve cardiac function after myocardial infarction through an Nkx2.5(+) cardiomyoblast-dependent process. METHODS AND RESULTS To determine the effect of A83-01 on the number of Nkx2.5(+) cardiomyoblasts in the heart after myocardial injury, we treated transgenic Nkx2.5 enhancer-GFP reporter mice for 7 days with either A83-01 or DMSO and measured the number of GFP(+) cardiomyoblasts in the heart at 1 week after injury by flow cytometry. To determine the degree of new cardiomyocyte formation after myocardial injury and the effect of A83-01 in this process, we employed inducible Nkx2.5 enhancer-Cre transgenic mice to lineage label postnatal Nkx2.5(+) cardiomyoblasts and their differentiated progenies after myocardial injury. We also examined the cardiac function of each animal by intracardiac haemodynamic measurements. We found that A83-01 treatment significantly increased the number of Nkx2.5(+) cardiomyoblasts at baseline and after myocardial injury, resulting in an increase in newly formed cardiomyocytes. Finally, we showed that A83-01 treatment significantly improved ventricular elastance and stroke work, leading to improved contractility after injury. CONCLUSION Pharmacological inhibition of TGFβ signalling improved cardiac function in injured mice and promoted the expansion and cardiomyogenic differentiation of Nkx2.5(+) cardiomyoblasts. Direct modulation of resident cardiomyoblasts in vivo may be a promising strategy to enhance therapeutic cardiac regeneration.
Collapse
Affiliation(s)
- Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Hung Liu
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yi-Jin Ho
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sean M Wu
- Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lokey Stem Cell Research Building, G1120A, 265 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol 2014; 20:11273-11280. [PMID: 25170211 PMCID: PMC4145765 DOI: 10.3748/wjg.v20.i32.11273] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier.
Collapse
|
12
|
Divella R, Daniele A, Abbate I, Bellizzi A, Savino E, Simone G, Giannone G, Giuliani F, Fazio V, Gadaleta-Caldarola G, Gadaleta CD, Lolli I, Sabbà C, Mazzocca A. The presence of clustered circulating tumor cells (CTCs) and circulating cytokines define an aggressive phenotype in metastatic colorectal cancer. Cancer Causes Control 2014; 25:1531-41. [DOI: 10.1007/s10552-014-0457-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
|
13
|
Ebi M, Kataoka H, Shimura T, Kubota E, Hirata Y, Mizushima T, Mizoshita T, Tanaka M, Mabuchi M, Tsukamoto H, Tanida S, Kamiya T, Higashiyama S, Joh T. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells. Biochem Biophys Res Commun 2010; 402:449-54. [DOI: 10.1016/j.bbrc.2010.09.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 10/19/2022]
|
14
|
Rojas A, Padidam M, Cress D, Grady WM. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1165-73. [PMID: 19339207 PMCID: PMC2700179 DOI: 10.1016/j.bbamcr.2009.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 12/26/2022]
Abstract
TGF-beta is a pluripotent cytokine that mediates its effects through a receptor composed of TGF-beta receptor type II (TGFBR2) and type I (TGFBR1). The TGF-beta receptor can regulate Smad and nonSmad signaling pathways, which then ultimately dictate TGF-beta's biological effects. We postulated that control of the level of TGFBR2 is a mechanism for regulating the specificity of TGF-beta signaling pathway activation and TGF-beta's biological effects. We used a precisely regulatable TGFBR2 expression system to assess the effects of TGFBR2 expression levels on signaling and TGF-beta mediated apoptosis. We found Smad signaling and MAPK-ERK signaling activation levels correlate directly with TGFBR2 expression levels. Furthermore, p21 levels and TGF-beta induced apoptosis appear to depend on relatively high TGFBR2 expression and on the activation of the MAPK-ERK and Smad pathways. Thus, control of TGFBR2 expression and the differential activation of TGF-beta signaling pathways appears to be a mechanism for regulating the specificity of the biological effects of TGF-beta.
Collapse
Affiliation(s)
- Andres Rojas
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - Malla Padidam
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - Dean Cress
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center (AR, WMG); Department of Medicine, University of Washington Medical School; R&D Service, Puget Sound VA Healthcare system, Seattle WA (WMG); Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN; Intrexon Corporation, Blacksburg, VA (MP, DC)
| |
Collapse
|