1
|
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Challenges and considerations in liposomal hydrogels for the treatment of infection. Expert Opin Drug Deliv 2025; 22:255-276. [PMID: 39797393 DOI: 10.1080/17425247.2025.2451620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial. AREAS COVERED We provide an overview of liposomal hydrogels that were developed for superior delivery of antimicrobials at different infections sites, with focus on skin and vaginal infections. The review summarizes the challenges of infection site and most common infection-causing pathogens and offers commentary on most relevant features the formulation needs to optimize to increase the therapy outcome. We discuss the impact of liposomal composition, size, and choice of polymer-forming hydrogel on antimicrobial outcome based on the literature overview and own experience in the field. EXPERT OPINION Liposomal hydrogels offer improved therapy outcome in localized antimicrobial therapy. By fine-tuning of liposomal as well as hydrogel properties, formulations with superior performance can be optimized targeting specific infection site.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Xiao D, Sun H, Li X, Meng F, Sun T, Shao X, Ding Y, Li Y. Rumex japonicus Houtt. leaves: the chemical composition and anti-fungal activity. J Mycol Med 2024; 34:101513. [PMID: 39500231 DOI: 10.1016/j.mycmed.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Candida albicans is a pathogenic commensal fungus. Trichophyton mentagrophytes and Trichophyton rubrum are the leading pathogens of dermatophysis. Rumex japonicus Houtt. has a miraculous effect on the treatment of tinea skin disease, but its mechanism has not been clarified. PURPOSE This paper investigated the anti-fungal ingredients of the leaves of Rumex japonicus Houtt. (RJH-L) and the mechanism of the anti-fungal (Trichophyton mentagrophytes, Trichophyton rubrum and Candida albicans). METHOD First, the chemical composition analysis of RJH-L was conducted by acid extraction and alcohol precipitation, high performance liquid chromatography (HPLC) and nuclear magnetic resonance spectroscopy (NMR); in vitro anti-fungal experiments were carried out, including the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) spore germination rate, germ tube production rate, nucleic acid and protein leakage rate, biofilm structure, PCR, etc., to study the mechanism of action of RJH-L anti-fungal and anti-biofilm activity. RESULT Seven monomer compounds were obtained: anthraquinones (rhein, emodin and aloe-emodin); polyphenols (ferulic acid, p-coumaric acid), and flavonoids (rutin and quercetin). The results of in vitro anti-fungal experiments showed that the extracts of RJH-L had strong inhibitory effect on both fungi (MIC: 1.96 µg/mL-62.50 µg/mL), of which emodin had the strongest effect on Trichophyton mentagrophytes; and rhein had the strongest effect on Candida albicans and Trichophyton rubrum. The above active components can inhibit the germination of fungal spores and germ tube, change cell membrane permeability, prevent hyphal growth, destroy the biofilm structure, and down-regulate the expression of agglutinin-like sequencefamily1 of biofilm growth. CONCLUSION This study shows that RJH-L are rich in polyphenols, flavonoids, and anthraquinones, and play a fungicidal role.
Collapse
Affiliation(s)
- Dandan Xiao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - He Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Xue Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Fanying Meng
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Tong Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Xinting Shao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Yuling Ding
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| | - Yong Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 Jilin, PR China.
| |
Collapse
|
3
|
Singh G, Narang RK. Polymeric micelle gel with luliconazole: in vivo efficacy against cutaneous candidiasis in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7001-7015. [PMID: 38625553 DOI: 10.1007/s00210-024-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The objective of this research was focused on the design and development of luliconazole-loaded polymeric micelle hydrogel (LUL-PM-CHG) using quality by design (QbD) principle to improve the penetration and retention of LUL in the skin. The optimization of the formulation involved the utilization of a Box-Behnken design with three factors and three levels. The impact of specific formulation variables, namely the ratio of poloxamer P123 and F127, sonication time, and the quantity of drug, was investigated in terms of particle size, micellar incorporation efficiency, and polydispersity index. The LUL-loaded P123/F127 mixed micelles involved the thin film hydration method for thin preparation. The characteristics of optimized formulation include a particle size of 226 ± 8.52 nm, a polydispersity index (PDI) of 0.153 ± 0.002, a zeta potential (ZP) of 30.15 ± 2.32 mV, and a micellar incorporation efficiency (MIE) of 88.38 ± 3.84%. In vitro release studies indicated a sustained release of LUL-PM-CHG for a duration of up to 8 h. The MIC, GI50, and GI90 of different formulations on Candida albicans were determined using both the microtiter broth dilution method and the plate method and showed that LUL-PM-CHG exhibited the highest antifungal activity compared to the other formulations, with MIC values of 3.25 ± 0.19 ng/mL, GI50 values of 37.11 ± 2.89, and GI90 values of 94.98 ± 3.41 The study also measured the % of inhibition activity and the generation of intracellular reactive oxygen species (ROS) using flow cytometry. LUL-PM-CHG showed the highest percentage of inhibition (75.5%) and ROS production (MFI-140951), indicating its enhanced activity compared to LUL-CHG and LUL. Fungal infection was induced in Wistar rats using immunosuppressant's treatment followed by exposure to C. albicans. Finally, in vivo fungal scaling and histopathological studies indicated a reduction in fungal infection in Wistar rat skin after treatment. The obtained results suggested that LUL-PM can serve as a promising formulation to enhance luliconazole antifungal activity and increase patient compliance.
Collapse
Affiliation(s)
- Gurmeet Singh
- I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India.
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India.
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Amisha, Das Gupta G, Singh H, Singh S, Singh A. QbD-assisted optimisation of liposomes in chitosan gel for dermal delivery of aceclofenac as synergistic approach to combat pain and inflammation. Drug Deliv Transl Res 2024; 14:2403-2416. [PMID: 38291224 DOI: 10.1007/s13346-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Aceclofenac (ACE) is a drug that was precisely devised to circumvent the shortcomings associated with diclofenac. However, ACE too corresponds to nonsteroidal anti-inflammatory drug (NSAID)-related adverse effects, but with a lower amplitude. The present investigation seeks to develop liposomes loaded with ACE adopting a central composite design (CCD) and formulate a chitosan-based hydrogel for synergistic anti-inflammatory efficacy and improved ACE dermal administration. On the basis of preliminary vesicle size, Poly Dispersity Index (PDI), and drug entrapment, the composition of lipid, cholesterol, and vitamin E TPGS were chosen as independent variables. The formulation composition met the specifications for an optimum liposomal formulation, with total lipid concentration (13.5% w/w), cholesterol concentration (10% w/w), and surfactant concentration (2% w/w). With particle size and PDI of 174.22 ± 5.46 nm and 0.285 ± 0.01 respectively, the optimised formulation achieved an entrapment effectiveness of 92.08 ± 3.56%. Based on the CCD design, the optimised formulation Acec-Lipo opt was chosen and was subsequently transformed to a chitosan-based gel formulation for in vitro drug release, penetration through the skin, in vivo analgesic therapeutic activity, and skin irritation testing. % age oedema inhibition was found to be greatest with the Acec-Lipo opt gel formulation, followed by Acec gel. These results reinforce the notion that the inclusion of chitosan resulted in a synergistic effect despite the same strength of the drug. The findings suggested that Acec-Lipo incorporated in chitosan gel for skin targeting might be an effective formulation for topical ACE administration in clinical subjects.
Collapse
Affiliation(s)
- Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | | | - Harmanpreet Singh
- GEM Lab, Department of Pathology, Augusta University, Augusta, GA, USA
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
5
|
Doshi A, Prabhakar B, Wairkar S. Prolonged retention of luliconazole nanofibers for topical mycotic condition: development, in vitro characterization and antifungal activity against Candida albicans. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:46. [PMID: 39115576 PMCID: PMC11310262 DOI: 10.1007/s10856-024-06815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2024] [Indexed: 08/11/2024]
Abstract
An antifungal agent, luliconazole, is commercially available in cream or gel form. The major limitation of these conventional formulations is less residence time at the infection site. The primary objective of this work was to develop luliconazole-loaded polyvinyl alcohol (Luz-PVA) nanofibers for mycotic skin conditions with a longer retention. Luz-PVA nanofibers were prepared by plate electrospinning and optimized for polymer concentration and process parameters. The optimized batch (Trial 5) was prepared by 10% PVA, processed at 22.4 kV applied voltage, and 14 cm plate and spinneret distance to yield thick, uniform, and peelable nanofibers film. There was no interaction observed between Luz and PVA in the FTIR study. DSC and XRD analysis showed that luliconazole was loaded into fabricated nanofibers with a reduced crystallinity. FESEM studies confirmed the smooth, defect-free mats of nanofibers. Luz-PVA nanofibers possessed a tensile strength of 21.8 N and a maximum elongation of 10.8%, representing the excellent elasticity of the scaffolds. For Luz-PVA nanofibers, the sustained and complete drug release was observed in 48 h. In antifungal activity using Candida albicans, the Luz-PVA nanofibers showed a greater zone of inhibition (30.55 ± 0.38 mm and 29.27 ± 0.31 mm) than marketed cream (28.06 ± 0.18 mm and 28.47 ± 0.24 mm) and pure drug (27.57 ± 0.17 mm and 27.50 ± 0.47 mm) at 1% concentration in Sabouraud dextrose agar and yeast malt agar, respectively. Therefore, Luz-PVA nanofibers exhibited good mechanical properties, longer retention time, and better antifungal activity than marketed products and, therefore, can be further examined preclinically as a potential treatment option for topical mycotic infection.
Collapse
Affiliation(s)
- Akashkumar Doshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Saini S, Soni B, Kaur M, Thakur S, Shivgotra R, Shahtaghi NR, Jain SK. Propellant Free Pressurized Spray System of Etodolac to Manage Acute Pain Conditions: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:112. [PMID: 38744715 DOI: 10.1208/s12249-024-02807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
This study aimed to develop a propellant-free topical spray formulation of Etodolac (BCS-II), a potent NSAID, which could be beneficial in the medical field for the effective treatment of pain and inflammation conditions. The developed novel propellant-free spray formulation is user-friendly, cost-effective, propellant-free, eco-friendly, enhances the penetration of Etodolac through the skin, and has a quick onset of action. Various formulations were developed by adjusting the concentrations of different components, including lecithin, buffering agents, film-forming agents, plasticizers, and permeation enhancers. The prepared propellant-free spray formulations were then extensively characterized and evaluated through various in vitro, ex vivo, and in vivo parameters. The optimized formulation exhibits an average shot weight of 0.24 ± 0.30 ml and an average drug content or content uniformity of 87.3 ± 1.01% per spray. Additionally, the optimized formulation exhibits an evaporation time of 3 ± 0.24 min. The skin permeation study demonstrated that the permeability coefficients of the optimized spray formulation were 21.42 cm/h for rat skin, 13.64 cm/h for mice skin, and 18.97 cm/h for the Strat-M membrane. When assessing its potential for drug deposition using rat skin, mice skin, and the Strat-M membrane, the enhancement ratios for the optimized formulation were 1.88, 2.46, and 1.92, respectively against pure drug solution. The findings from our study suggest that the propellant-free Etodolac spray is a reliable and safe topical formulation. It demonstrates enhanced skin deposition, and improved effectiveness, and is free from any skin irritation concerns.
Collapse
Affiliation(s)
- Shagun Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Bindu Soni
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Riya Shivgotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
7
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
8
|
Dadwal N, Amisha, Singh D, Singh A. Quality-by-Design Approach for Investigating the Efficacy of Tacrolimus and Hyaluronic Acid-Loaded Ethosomal Gel in Dermal Management of Psoriasis: In Vitro, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:220. [PMID: 37914839 DOI: 10.1208/s12249-023-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Psoriasis is an auto-immune condition with high keratinocyte hyperproliferation due to lower p53 and p22 levels. Tacrolimus, an immune suppressor, is considered one of the most effective drugs in suppressing psoriasis. Systematic administration of tacrolimus often leads to challenging side effects, namely increased infection risk, renal toxicity, neurological symptoms such as tremors and headaches, gastrointestinal disturbances, hypertension, skin-related problems, etc. To address this, a nanocarrier-based formulation of tacrolimus along with inclusion of hyaluronic acid was developed. The optimization and formulation of ethosomes via the ethanol injection technique were done based on the Box-Behnken experimental design. The results revealed hyaluronic acid-based tacrolimus ethosomes (HA-TAC-ETH) had nanometric vesicle size (315.7 ± 2.2 nm), polydispersity index (PDI) (0.472 ± 0.07), and high entrapment efficiency (88.3 ± 2.52%). The findings of drug release and skin permeation showed sustained drug release with increased dermal flux and enhancement ratio. The effectiveness of HA-TAC-ETH was confirmed in an imiquimod (5%)-prompted psoriasis model. The skin irritation score and Psoriasis Area and Severity Index (PASI) score indicated that HA-TAC-ETH gel has validated a decline in the entire factors (erythema, edema, and thickness) in the imiquimod-induced psoriasis model in contrast with TAC-ETH gel and TAC ointment. The fabricated HA-TAC-ETH opt gel proved to be safe and effective in in vivo studies and could be employed to treat psoriasis further.
Collapse
Affiliation(s)
- Nikhil Dadwal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
9
|
Khalil A, Kashif M. Circular dichroism assessment of an imidazole antifungal drug with plant based silver nanoparticles: Quantitative and DFT analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122638. [PMID: 36963277 DOI: 10.1016/j.saa.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Circular dichroism (CD) methods have been developed for the analysis of luliconazole (LUC) using plant based silver nanoparticles (P-AgNPs). Cleaner and natural approach have found significant attention in recent times owing to their exceptional physicochemical characteristics. Utilizing FTIR, SEM, and XRD, the produced nanoparticles were analyzed. The produced P-AgNPs were then used to assay LUC in formulation drugs. Four CD methods are developed as zero order and second order derivative methods. Methods I and II are based on a normal CD scan (zero order) that produced calibration range from 2 - 16 μgmL-1 at 232 nm (positive band) and 299 nm (negative band), respectively. Methods III and IV are the second order derivative methods that are developed at 232 nm (negative band) and at 251 nm (positive band). Density functional theory study was done to comprehend the feasibility of the developed methods and to optimize the structure and energy gap that validated the experimental procedure. The LUC assay methods using the proposed CD approach are simple, sensitive and precise with a limit of detection for methods I, II, III and IV of 0.527, 0.428, 0.250 and 0.30 μgmL-1 and limit of quantification of 1.75, 1.42, 0.833 and 1.0 μgmL-1, respectively. For intra- and inter-day precision, the recovery data ranged from 99.48 to 101% and 99.37 to 101%, respectively. The methods were used in dosage forms that produced a relative standard deviation of less than 2% and the true bias (θL and θU) within ±2%, demonstrating the potential use of the developed methods.
Collapse
Affiliation(s)
- Adila Khalil
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Mohammad Kashif
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
10
|
Kumari S, Alsaidan OA, Mohanty D, Zafar A, Das S, Gupta JK, Khalid M. Development of Soft Luliconazole Invasomes Gel for Effective Transdermal Delivery: Optimization to In-Vivo Antifungal Activity. Gels 2023; 9:626. [PMID: 37623081 PMCID: PMC10453308 DOI: 10.3390/gels9080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Luliconazole (LZ) is a good candidate for the treatment of fungal infection topically but has limitations, i.e., poor solubility and poor permeability to skin. Due to these limitations, multiple administrations for a long time are required to treat the inflection. The aim of the present study was to develop the invasomes (IVS) gel of LZ to improve the topical antifungal activity. The IVS was prepared by the thin-film hydration method and optimized by Box-Bhekhen design software. The optimized LZIVS (LZIVSopt) has 139.1 ± 4.32 nm of vesicle size, 88.21 ± 0.82% of entrapment efficiency, 0.301 ± 0.012 of PDI, and 19.5 mV (negative) of zeta potential. Scanning microscopy showed a spherical shape of the vesicle. FTIR spectra showed there is no interaction between the drug and lipid. Thermogram showed that the LZ is encapsulated into the LZIVS matrix. LZIVSopt gel (LZIVSopt-G3) exhibited optimum viscosity (6493 ± 27 cps) and significant spreadability (7.2 g·cm/s). LZIVSopt-G3 showed 2.47-fold higher permeation than pure LZ-gel. LZIVSopt-G3 did not show any edema or swelling in the skin, revealing that the developed formulation is non-irritant. LZIVSopt-G3 exhibited significant inhibition of the fungus infection (C. albicans) in the infected rats. The finding concluded that IVS gel is a good carrier and an attractive approach for the enhancement of topical delivery of LZ to treat the fungal infection.
Collapse
Affiliation(s)
- Sunitha Kumari
- Department of Pharmaceutics, Anurag University, Hyderabad 500088, Telangana, India;
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (O.A.A.); (A.Z.)
| | - Dibyalochan Mohanty
- Department of Pharmaceutics, Anurag University, Hyderabad 500088, Telangana, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (O.A.A.); (A.Z.)
| | - Swagatika Das
- School of Pharmacy, Centurion University of Technology and Management, Gopalpur 756044, Odisha, India;
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Ayatollahi Mousavi SA, Mokhtari A, Barani M, Izadi A, Amirbeigi A, Ajalli N, Amanizadeh A, Hadizadeh S. Advances of liposomal mediated nanocarriers for the treatment of dermatophyte infections. Heliyon 2023; 9:e18960. [PMID: 37583758 PMCID: PMC10424084 DOI: 10.1016/j.heliyon.2023.e18960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Due to the adverse effects associated with long-term administration of antifungal drugs used for treating dermatophytic lesions like tinea unguium, there is a critical need for novel antifungal therapies that exhibit improved absorption and minimal adverse effects. Nanoformulations offer a promising solution in this regard. Topical formulations may penetrate the upper layers of the skin, such as the stratum corneum, and release an appropriate amount of drugs in therapeutic quantities. Liposomes, particularly nanosized ones, used as topical medication delivery systems for the skin, may have various roles depending on their size, lipid and cholesterol content, ingredient percentage, lamellarity, and surface charge. Liposomes can enhance permeability through the stratum corneum, minimize systemic effects due to their localizing properties, and overcome various challenges in cutaneous drug delivery. Antifungal medications encapsulated in liposomes, including fluconazole, ketoconazole, croconazole, econazole, terbinafine hydrochloride, tolnaftate, and miconazole, have demonstrated improved skin penetration and localization. This review discusses the traditional treatment of dermatophytes and liposomal formulations. Additionally, promising liposomal formulations that may soon be available in the market are introduced. The objective of this review is to provide a comprehensive understanding of dermatophyte infections and the role of liposomes in enhancing treatment.
Collapse
Affiliation(s)
- Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abnoos Mokhtari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Azam Amanizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Hadizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
13
|
Hassan AS, Hofni A, Abourehab MAS, Abdel-Rahman IAM. Ginger Extract-Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int J Nanomedicine 2023; 18:1259-1280. [PMID: 36945254 PMCID: PMC10024879 DOI: 10.2147/ijn.s400604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction Ginger extract (GE) has sparked great interest due to its numerous biological benefits. However, it suffers from limited skin permeability, which challenges its transdermal application. The target of the current work was to develop transethosomes as a potential nanovehicle to achieve enhanced transdermal delivery of GE through the skin. Methods GE-loaded transethosomes were prepared by cold injection using different edge activators. The fabricated nanovesicles were evaluated for particle size, ζ-potential, encapsulation efficiency, and in vitro drug release. The selected formulation was then laden into the hydrogel system and evaluated for ex vivo permeability and in vivo anti-inflammatory activity in a carrageenan-induced rat-paw edema model. Results The selected formulation comprised of sodium deoxycholate exhibited particle size of 188.3±7.66 nm, ζ-potential of -38.6±0.08 mV, and encapsulation efficiency of 91.0%±0.24%. The developed transethosomal hydrogel containing hydroxypropyl methylcellulose was homogeneous, pseudoplastic, and demonstrated sustained drug release. Furthermore, it exhibited improved flux (12.61±0.45 μg.cm2/second), apparent skin permeability (2.43±0.008×10-6 cm/second), and skin deposition compared to free GE hydrogel. In vivo testing and histopathological examination revealed that the GE transethosomal hydrogel exhibited significant inhibition of edema swelling compared to free GE hydrogel and ketoprofen gel. The animals that were treated with ginger transethosome hydrogel showed a significant decrement in reactive oxygen species and prostaglandin E2 compared to untreated animals. Conclusion Transethosomes might be a promising new vehicle for GE for effective skin permeation and anti-inflammation. To the best of our knowledge, this work is the first utilization of transethosomes laden into hydrogel as a novel transdermal delivery system of GE.
Collapse
Affiliation(s)
- Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Iman A M Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
14
|
Hassan N, Farooq U, Das AK, Sharma K, Mirza MA, Fatima S, Singh O, Ansari MJ, Ali A, Iqbal Z. In Silico Guided Nanoformulation Strategy for Circumvention of Candida albicans Biofilm for Effective Therapy of Candidal Vulvovaginitis. ACS OMEGA 2023; 8:6918-6930. [PMID: 36844532 PMCID: PMC9947946 DOI: 10.1021/acsomega.2c07718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Candidal vulvovaginitis involving multispecies of Candida and epithelium-bound biofilm poses a drug-resistant pharmacotherapeutic challenge. The present study aims for a disease-specific predominant causative organism resolution for the development of a tailored vaginal drug delivery system. The proposed work fabricates a luliconazole-loaded nanostructured lipid carrier-based transvaginal gel for combating Candida albicans biofilm and disease amelioration. The interaction and binding affinity of luliconazole against the proteins of C. albicans and biofilm were assessed using in silico tools. A systematic QbD analysis was followed to prepare the proposed nanogel using a modified melt emulsification-ultrasonication-gelling method. The DoE optimization was logically implemented to ascertain the effect of independent process variables (excipients concentration; sonication time) on dependent formulation responses (particle size; polydispersity index; entrapment efficiency). The optimized formulation was characterized for final product suitability. The surface morphology and dimensions were spherical and ≤300 nm, respectively. The flow behavior of an optimized nanogel (semisolid) was non-Newtonian similar to marketed preparation. The texture pattern of a nanogel was firm, consistent, and cohesive. The release kinetic model followed was Higuchi (nanogel) with a % cumulative drug release of 83.97 ± 0.69% in 48 h. The % cumulative drug permeated across a goat vaginal membrane was found to be 53.148 ± 0.62% in 8 h. The skin-safety profile was examined using a vaginal irritation model (in vivo) and histological assessments. The drug and proposed formulation(s) were checked against the pathogenic strains of C. albicans (vaginal clinical isolates) and in vitro established biofilms. The visualization of biofilms was done under a fluorescence microscope revealing mature, inhibited, and eradicated biofilm structures.
Collapse
Affiliation(s)
- Nazia Hassan
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uzma Farooq
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ayan Kumar Das
- Hamdard
Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110062, India
| | - Kalicharan Sharma
- Department
of Pharmaceutical Chemistry, DPSRU, New Delhi 110017, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Suhail Fatima
- Department
of Amraz-E-Niswan Wa Qabalat, School of Unani Medical Education &
Research (SUMER), Jamia Hamdard, New Delhi 110062, India
| | - Omana Singh
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Asgar Ali
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
15
|
Latief U, Kaur M, Dar SH, Thakur S, Per TS, Tung GK, Jain SK. Preparation and Characterisation of Liposomes of Bergenia Ciliata Extract and Evaluation of their Hepatoprotective Activity. J Pharm Sci 2023; 112:328-335. [PMID: 35872024 DOI: 10.1016/j.xphs.2022.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Acute liver damage (ALD) can cause biochemical and pathological changes, which can lead to major complications and even death. The goal of the study was to examine the therapeutic efficacy of liposomes of Bergenia ciliata extract against thioacetamide-induced liver damage in rats. Liposomal batches of B. ciliata extract were prepared by altering the kind and amount of phospholipids and characterized through various physiochemical properties such as laser diffraction, TEM, encapsulation efficiency, stability and in-vitro release studies. In-vivo hepatoprotective studies were performed on TAA-induced acute hepatic damage model. Further, in-silico studies of bergenin against the three hepatic damage markers viz. TGF-β1, TNF-α and interleukin-6 were also performed. Laser diffraction and TEM showed that most stable liposome batch of B. ciliata extract were in the range of 678-1170 nm with encapsulation efficiency of 84.3±3.5. Extract was found to be rapidly dissociated from B. ciliata liposomes in HCl than PBS, according to in-vitro release data. In-vivo data revealed a significant decline in LFT indicators, amelioration of pathological changes and high bergenin bioavailability in the liposomal group. Protective activity of bergenin against ALD targets like TGF-β1, TNF-α and interleukin-6 was anticipated via molecular docking research. As a result, the current findings of the study indicate that B. ciliata liposomes and bergenin have promising ameliorative potential in the management of ALD.
Collapse
Affiliation(s)
- Uzma Latief
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sajad Hussain Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tasir Sharief Per
- Department of Botany, Govt. Degree College Doda, Jammu and Kashmir, 182202, India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Subheet Kumar Jain
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India; Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
16
|
Yang J, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Li J, Zhang J. Development of a Luliconazole Nanoemulsion as a Prospective Ophthalmic Delivery System for the Treatment of Fungal Keratitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:2052. [PMID: 36297487 PMCID: PMC9608689 DOI: 10.3390/pharmaceutics14102052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Luliconazole (LCZ), a novel imidazole drug, has broad-spectrum and potential antifungal effects, which makes it a possible cure for fungal keratitis; nevertheless, its medical use in ocular infections is hindered by its poor solubility. The purpose of this study was to design and optimize LCZ nanoemulsion (LCZ-NE) formulations using the central composite design-response surface methodology, and to investigate its potential in improving bioavailability following ocular topical administration. The LCZ-NE formulation was composed of Capryol 90, ethoxylated hydrogenated castor oil, Transcutol® P and water. The shape of LCZ-NE was spherical and uniform, with a droplet size of 18.43 ± 0.05 nm and a low polydispersity index (0.070 ± 0.008). The results of an in vitro release of LCZ study demonstrated that the LCZ-NE released more drug than an LCZ suspension (LCZ-Susp). Increases in the inhibition zone indicated that the in vitro antifungal activity of the LCZ-NE was significantly improved. An ocular irritation evaluation in rabbits showed that the LCZ-NE had a good tolerance in rabbit eyes. Ocular pharmacokinetics analysis revealed improved bioavailability in whole eye tissues that were treated with LCZ-NE, compared with those treated with LCZ-Susp. In conclusion, the optimized LCZ-NE formulation exhibited excellent physicochemical properties, good tolerance, enhanced antifungal activity and bioavailability in eyes. This formulation would be safe, and shows promise in effectively treating ocular fungal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| |
Collapse
|
17
|
Formulation and Development of a Water-in-Oil Emulsion-Based Luliconazole Cream: In Vitro Characterization and Analytical Method Validation by RP-HPLC. Int J Anal Chem 2022; 2022:7273840. [PMID: 36193208 PMCID: PMC9525796 DOI: 10.1155/2022/7273840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Luliconazole (LCZ) is a new antifungal agent containing imidazole moiety which revealed broad-spectrum antifungal activity. The aim of this research was to prepare water-in-oil (w/o) emulsion-based cream formulation of LCZ in addition to the development and validation of an analytical method by reverse-phase high-performance liquid chromatography (RP-HPLC). Cetostearyl alcohol (12.14%), light liquid paraffin (5.00%), white soft paraffin (2.75%), and Tween-80 (1.00%) appeared as the optimized concentration to give better consistency to the cream. Moreover, without adding pH adjusting agents the pH of the optimized formulation (F5) was obtained within the range of human skin pH throughout the stability period. The value of particle size, polydispersity index, and zeta potential was 187.90 ± 2.061 nm, 0.124 ± 0.026, and -10.553 ± 1.349 mV, respectively. In this study, an analytical C18 (4.6 mm × 25 cm), 5 μm column was used for chromatographic separation with a mixture of acetonitrile and water in the proportion of 50 : 50 v/v as the mobile phase at a flow rate of 1.0 mL/min. The calibration curve was obtained linear at 296 nm in the concentration range of 0.08–0.12 mg/mL. Furthermore, the limit of detection (LOD) and limit of quantification (LOQ) were 0.0013 and 0.0042 µg/mL, respectively. In addition, the observed results demonstrated that our developed method was linear (R2 = 0.999), precise (%RSD below than 2.0%), and accurate (mean recovery% = 100.18–100.91). The F5 showed no physical changes until 6th month analysis at room temperature and accelerated conditions. Similarly, the assay obtained 101.99% ± 0.27 and 99.89% ± 0.08 at room temperature and accelerated conditions, respectively. Additionally, all validated parameters were obtained within the acceptable limit as well. These findings conclude that both physically and chemically stable w/o cream formulation of LCZ can be formulated and assessed for their stability by applying the authenticated analytical procedure of RP-HPLC.
Collapse
|
18
|
Babu CK, Shubhra, Ghouse SM, Singh PK, Khatri DK, Nanduri S, Singh SB, Madan J. Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials. Curr Pharm Des 2022; 28:1611-1620. [PMID: 35747957 DOI: 10.2174/1381612828666220623095743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations like lower skin permeation and shorter skin retention of drug. Therefore, present review is an attempt to decode the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we also summarized the activity of functional nanomaterials based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on case-to-case basis. In addition, efforts have also been made to unbox the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target owing to the formation of hydrogen bond with Glu132, Glu133, and Arg143, in addition to few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA) to gain commercial success.
Collapse
Affiliation(s)
- Chanti Katta Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shubhra
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Telangana, India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Sharma T, Thakur S, Kaur M, Singh A, Jain SK. Novel Hyaluronic Acid ethosomes based gel formulation for topical use with reduced toxicity, better skin permeation, deposition, and improved pharmacodynamics. J Liposome Res 2022:1-15. [PMID: 35730480 DOI: 10.1080/08982104.2022.2087675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hyaluronic Acid (HA) has been applied as an anti-ageing molecule in the form of topical products. Current topical commercial formulations of HA face the limitations of very small and stagnant skin permeation, thereby demanding enduring administration of the formulation to sustain its action. In this study, Lipid-based nanocarriers in the form of ethosomes were formulated in a 1% w/w HA strength and were extensively evaluated in vitro, ex-vivo, and in vivo parameters along with a comparison to it's commercial counterpart. The optimised ethosomes-based HA gel formulation revealed required pH (6.9 ± 0.2), small globule size (1024 ± 9 nm), zeta potential of -6.39 ± 0.2 mV, and 98 ± 1.1% HA content. The ex vivo skin permeation and deposition potenwere conferred on synthetic membrane Strat-M, Human cadaver skin, mice skin, rat skin, and pig skin, and both parameters were found to be much higher in comparison to the commercial topical formulation. Skin deposition capacity of the optimised HA formulation was further confirmed by Scan Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) and it was observed that the developed ethosomal gel formulation got deposited more on the treated skin. The in vivo anti-ageing effect of optimised ethosomal gel on rats was found to be greater when compared to commercial formulation of HA and the developed carrier-based system proved to deliver the HA molecule in very small amounts into the systemic circulation. The results endorse the ethosomal carrier-based formulation of HA as a attractive technique for better local bioavailability of HA.
Collapse
Affiliation(s)
- Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
20
|
Does the technical methodology influence the quality attributes and the potential of skin permeation of Luliconazole loaded transethosomes? J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Mahajan A, Kaur L, Singh G, Dhawan RK, Singh L. Multipotentiality of Luliconazole against Various Fungal Strains: Novel Topical Formulations and Patent Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2021; 16:182-195. [PMID: 34766898 DOI: 10.2174/2772434416666211111105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Luliconazole is a broad-spectrum antifungal agent with impactful fungicidal and fungistatic activity. It has shown exceptional potency against miscellaneous fungal strains like Candida, Aspergillus, Malassezia, Fusarium species and various dermatophytes. OBJECTIVE Luliconazole belongs to class Ⅱ of the Biopharmaceutical Classification System with low aqueous solubility. Although it is available conventionally as 1% w/v topical cream, it has limitations of lower skin permeation and shorter skin retention. Therefore, nanoformulations based on various polymers and nanostructure carriers can be employed to overcome the impediments regarding topical delivery and efficacy of luliconazole. METHODS In this review, we have tried to provide insight into the literature gathered from authentic web resources and research articles regarding recent research conducted on the subject of formulation development, patents, and future research requisites of luliconazole. RESULTS Nanoformulations can play a fundamental role in improving topical delivery by escalating dermal localization and skin penetration. Fabricating luliconazole into nanoformulations can overcome the drawbacks and can efficiently enhance its antimycotic activity. CONCLUSION It has been concluded that luliconazole has exceptional potential in the treatment of various fungal infections, and therefore, it should be exploited to its maximum for its innovative application in the field of mycology.
Collapse
Affiliation(s)
- Ayushi Mahajan
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Lovepreet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| |
Collapse
|
22
|
Development, Optimization, and Evaluation of Luliconazole Nanoemulgel for the Treatment of Fungal Infection. J CHEM-NY 2021. [DOI: 10.1155/2021/4942659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to optimize luliconazole nanoemulsion using Box–Behnken statistical design, which was further incorporated into the polymeric gel of Carbopol 934. The formulation was characterized for its size, entrapment efficiency, ex vivo permeation, and mechanism of release. The size of the dispersed globules of the optimized drug-loaded nanoemulsion was found to be 17 ± 3.67 nm with a polydispersity index (PDI) less than 0.5. Although the surface charge was recorded at –9.53 ± 0.251, the stability was maintained by the polymeric matrix that prevented aggregation and coalescence of the dispersed globules. The luliconazole-nanoemulgel (LUL-NEG) was characterized for drug content analysis, viscosity, pH, and refractive index, where the results were found to be 99.06 ± 0.59%, 9.26 ± 0.08 Pa.s, 5.65 ± 0.17, and 1.31 ± 0.08, respectively. The permeation across the rat skin was found to be significantly higher with LUL-NEG when compared with LUL gel. Furthermore, the skin irritation test performed in experimental animals revealed that the blank NEG, as well as the LUL-NEG, did not produce any signs of erythema following 48 h exposure. In addition, the histopathological findings of the experimental skins reported no abnormal signs at the formulation application site. Finally, the NEG formulation was found to create a statistically significant zone of inhibition (
< 0.05) when compared to all other test groups. Overall, it could be summarized that the nanoemulgel approach of delivering luliconazole across the skin to treat skin fungal infections could be a promising strategy.
Collapse
|
23
|
Lu J, Guo T, Fan Y, Li Z, He Z, Yin S, Feng N. Recent Developments in the Principles, Modification and Application Prospects of Functionalized Ethosomes for Topical Delivery. Curr Drug Deliv 2021; 18:570-582. [DOI: 10.2174/1567201817666200826093102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
Transdermal drug delivery helps to circumvent the first-pass effect of drugs and to avoid
drug-induced gastrointestinal tract irritation, compared with oral administration. With the extensive
application of ethosomes in transdermal delivery, the shortages of them have been noticed continuously.
Due to the high concentration of volatile ethanol in ethosomes, there are problems of drug leakage, system
instability, and ethosome-induced skin irritation. Thus, there is a growing interest in the development
of new generations of ethosomal systems. Functionalized ethosomes have the advantages of increased
stability, improved transdermal performances, an extended prolonged drug release profile and
site-specific delivery, due to their functional materials. To comprehensively understand this novel carrier,
this review summarizes the properties of functionalized ethosomes, their mechanism through the
skin and their modifications with different materials, validating their potential as promising transdermal
drug delivery carriers. Although functionalized ethosomes have presented a greater role for enhanced
topical delivery, challenges regarding their design and future perspectives are also discussed.
Collapse
Affiliation(s)
- Jianying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunlong Fan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuo Yin
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Alhakamy NA, Al-Rabia MW, Md S, Sirwi A, Khayat SS, AlOtaibi SS, Hakami RA, Al Sadoun H, Eldakhakhny BM, Abdulaal WH, Aldawsari HM, Badr-Eldin SM, Elfaky MA. Development and Optimization of Luliconazole Spanlastics to Augment the Antifungal Activity against Candida albicans. Pharmaceutics 2021; 13:977. [PMID: 34203359 PMCID: PMC8309172 DOI: 10.3390/pharmaceutics13070977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Luliconazole is a new topical imidazole antifungal drug for the treatment of skin infections. It has low solubility and poor skin penetration which limits its therapeutic applications. In order to improve its therapeutic efficacy, spanlastics nanoformulation was developed and optimized using a combined mixture-process variable design (CMPV). The optimized formulation was converted into a hydrogel formula to enhance skin penetration and increase the efficacy in experimental cutaneous Candida albicans infections in Swiss mice wounds. The optimized formulation was generated at percentages of Span and Tween of 48% and 52%, respectively, and a sonication time of 6.6 min. The software predicted that the proposed formulation would achieve a particle size of 50 nm with a desirability of 0.997. The entrapment of luliconazole within the spanlastics carrier showed significant (p < 0.0001) antifungal efficacy in the immunocompromised Candida-infected Swiss mice without causing any irritation, when compared to the luliconazole treated groups. The microscopic observation showed almost complete removal of the fungal colonies on the skin of the infected animals (0.2 ± 0.05 log CFU), whereas the control animals had 0.2 ± 0.05 log CFU. Therefore, luliconazole spanlastics could be an effective formulation with improved topical delivery for antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz Universit, Jeddah 21589, Saudi Arabia;
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative, Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.)
| | - Selwan Saud Khayat
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
| | - Sahar Saad AlOtaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
| | - Raghad Abkar Hakami
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Basmah Medhat Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.); (S.S.K.); (S.S.A.); (R.A.H.); (H.M.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud A. Elfaky
- Department of Natural Products and Alternative, Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (M.A.E.)
| |
Collapse
|
25
|
Dos Santos Porto D, Bajerski L, Donadel Malesuik M, Soldateli Paim C. A Review of Characteristics, Properties, Application of Nanocarriers and Analytical Methods of Luliconazole. Crit Rev Anal Chem 2021; 52:1930-1937. [PMID: 34011234 DOI: 10.1080/10408347.2021.1926219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Luliconazole is an imidazole agent, used for the treatment of fungi infection, especially dermatophytes. The mechanism of action of the drug consisting in inhibits sterol 14α-demethylase which interferes with ergosterol biosynthesis. Due to low aqueous solubility and highly lipophilic, there is a need to develop drug delivery systems (nanocarriers) capable to increase the solubility, permeability, and skin retention of luliconazole, and promote a better therapeutic effect. In this context, this review presents characteristics, properties, nanocarriers, and analytical methods used for luliconazole. From the analyzed studies, the majority reports the use of RP-HPLC techniques for luliconazole determination, but also are cited spectrophotometric UV methods. The luliconazole has been qualitatively and quantitatively analyzed in different matrices, such as raw material and pharmaceutical formulations, however, in this review, only one study was found with the luliconazole quantification biological matrix, demonstrating the lack of studies related to the quantification of the drug in biological matrices. The drug quantification in different matrices by analytical methods is of great importance since they assist in the control of the quality, efficacy, and safety of the medicine.
Collapse
Affiliation(s)
- Douglas Dos Santos Porto
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Lisiane Bajerski
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Marcelo Donadel Malesuik
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Clésio Soldateli Paim
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| |
Collapse
|
26
|
Investigating natural antibiofilm components: a new therapeutic perspective against candidal vulvovaginitis. Med Hypotheses 2021; 148:110515. [PMID: 33549963 DOI: 10.1016/j.mehy.2021.110515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The rampant emergence of Candida albicans in the vagina and its ability to thrive as a biofilm has outstood the prevalence of candidal vulvovaginitis (CVV), a gender-based fungal infection approximately affecting 75% of the global female population. The biofilm represents a multidimensional microbial population, which often dictates prominent caveats of CVV such as increased fungal virulence, drug resistance and infection relapse/recurrence. Additionally, the conjugated issues of the ineffectiveness of conventional antifungals (azoles), prolonged treatment durations, compromised patient compliance, economic and social burden, exacerbates CVV complications as well. Henceforth, the current hypothesis narrates an investigational proposal for exploration and combination of naturally derived antibiofilm components with luliconazole (imidazole antifungal agent) as a new therapeutic paradigm against CVV. The purported hypothesis unravels a synergistic approach for fabricating Nanostructured Lipid Carriers, NLCs loaded transvaginal gel with dual APIs of natural (antibiofilm) as well as the synthetic (antifungal) origin to target high therapeutic efficacy, delivery, retention, controlled release and bioadhesion in a vaginal milieu. The multipronged effect of antibiofilm and antifungal agents will expectably enhance drug susceptibility thus, maintaining Minimum Inhibitory Concentration (MIC) against cells of C. albicans and targeting its biofilm in planktonic, adherent, and sessile phases. The effective disruption of a biofilm could further lower infection resistance and recurrence as well. In conclusion, the purported hypothesis could speed up the emergence of novel drug combinations and accelerates new product development with solid, synergistic, and complementary activities against C. albicans and its biofilm, making it amenable for generating pre-clinical and clinical results therebycreating a suitableroadmap for commercialization.
Collapse
|
27
|
Firdaus S, Hassan N, Mirza MA, Ara T, El-Serehy HA, Al-Misned FA, Iqbal Z. FbD directed fabrication and investigation of luliconazole based SLN gel for the amelioration of candidal vulvovaginitis: a 2 T (thermosensitive & transvaginal) approach. Saudi J Biol Sci 2020; 28:317-326. [PMID: 33424312 PMCID: PMC7785458 DOI: 10.1016/j.sjbs.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023] Open
Abstract
Candidal vulvovaginitis (CVV), is the second most leading vaginal infection (global prevalence > 75%), caused due to excessive growth of Candida spp., predominantly Candida albicans (>95% cases). The current treatment regimens for CVV are marred with the challenges of fungal resistance & infection recurrence, subsequently leading to the compromised therapeutic efficacy of anti-fungal drugs, prolonged treatment and low patient compliance. The core of the present research was the fabrication & investigation of 2 T-SLN (solid lipid nanoparticles) gel carrying luliconazole for the amelioration of CVV. '2T' symbolizes transvaginal & thermosensitive attributes of the present formulation. SLNs were prepared by a modified melt emulsification-ultra sonication method using a combination of solid lipids (Gelucire 50/13 & Precirol ATO 5), surfactant (Tween 80) and co-surfactant (Kolliphor). Formulation by design (FbD) approach was adopted to obtain appropriately screened and tailored SLNs. The optimized SLNs yielded a particle size, polydispersity index & entrapment efficiency of 62.18 nm, 0.263 & 81.5% respectively. To formulate the 2 T-gel, the final SLNs were loaded into Carbopol 971P-NF and Triethanolamine based gel. The 2 T-SLN gel was found to be easily spreadable and homogenous with mean extrudability (15 ± 0.4 g/cm2), viscosity (696.42 ± 2.34 Pa·s) and %drug content (93.24 ± 0.73%) values.. The pH of the prepared 2 T-SLN gel (4.5 ± 0.5) was in concordance with the vaginal pH (normal conditions). For in-vitro characterization of an optimized 2 T-SLN gel the release kinetics & anticandidal activity were assessed which offers a %cumulative drug release of 62 ± 0.5% in 72 h and 37.3 ± 1.5 mm zone of inhibition in 48 h. The visual appearance & dimensions were determined using fluorescent microscopy (spherical shape) & transmission electron microscopy (90-120 nm) respectively. The optimized 2 T-SLN gel showcases a skin-friendly profile with no significant signs of erythema and oedema and was found to be stable at room temperature for 2 months without any visual non-uniformity/cracking/breaking. In conclusion, the current research serves a new therapeutic perspective in assessing the activity of luliconazole for vaginal drug delivery using a 2 T-SLN gel system.
Collapse
Affiliation(s)
- Salma Firdaus
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tabasum Ara
- Department of pharmaceutical Sciences, University of Kashmir, J&K, India
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
28
|
Baghel S, Nair VS, Pirani A, Sravani AB, Bhemisetty B, Ananthamurthy K, Aranjani JM, Lewis SA. Luliconazole‐loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections. Dermatol Ther 2020; 33:e13959. [DOI: 10.1111/dth.13959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/13/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Saahil Baghel
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Vishnumaya S. Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Asma Pirani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Brahmam Bhemisetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Koteshwara Ananthamurthy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| | - Shaila A. Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education Manipal Karnataka India
| |
Collapse
|