1
|
De Gaetano F, Leggio L, Celesti C, Genovese F, Falcone M, Giofrè SV, Iraci N, Iraci N, Ventura CA. Study of Host-Guest Interaction and In Vitro Neuroprotective Potential of Cinnamic Acid/Randomly Methylated β-Cyclodextrin Inclusion Complex. Int J Mol Sci 2024; 25:12778. [PMID: 39684490 DOI: 10.3390/ijms252312778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cinnamic acid (CA) has many beneficial effects on human health. However, its poor water solubility (0.23 g/L, at 25 °C) is responsible for its poor bioavailability. This drawback prevents its clinical use. To overcome the solubility limits of this extraordinary natural compound, in this study, we developed a highly water-soluble inclusion complex of CA with randomly methylated-β-cyclodextrin (RAMEB). The host-guest interaction was explored in liquid and solid states by UV-Vis titration, phase solubility analysis, FT-IR spectroscopy, and 1H-NMR. Additionally, molecular modeling studies were carried out. Both experimental and theoretical studies revealed a 1:1 CA/RAMEB inclusion complex, with a high apparent stability constant equal to 15,169.53 M-1. The inclusion complex increases the water solubility of CA by about 250-fold and dissolves within 5 min. Molecular modeling demonstrated that CA inserts its phenyl ring into the RAMEB cavity with its propyl-2-enoic acid tail leaning from the wide rim. Finally, a biological in vitro study of the inclusion complex, compared to the free components, was performed on the neuroblastoma SH-SY5Y cell line. None of them showed cytotoxic effects at the assayed concentrations. Of note, the pretreatment of SH-SY5Y cells with CA/RAMEB at 10, 30, and 125 µM doses significantly counteracted the effect of the neurotoxin MPP+, whilst CA and RAMEB alone did not show any neuroprotection. Overall, our data demonstrated that inclusion complexes overcome CA solubility problems, supporting their use for clinical applications.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Fabio Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Yang N, Wei L, Teng Y, Yu P, Xiang C, Liu J. Cyclodextrin-based metal-organic frameworks transforming drug delivery. Eur J Med Chem 2024; 274:116546. [PMID: 38823266 DOI: 10.1016/j.ejmech.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Cyclodextrin-based metal-organic frameworks (CD-MOFs) are gaining traction in the realm of drug delivery due to their inherent versatility and potential to amplify drug efficacy, specificity, and safety. This article explores the predominant preparation techniques for CD-MOFs, encompassing methods like vapor diffusion, microwave-assisted, and ultrasound hydrothermal approaches. Native CD-MOFs present compelling advantages in drug delivery applications. They can enhance drug loading capacity, stability, solubility, and bioavailability by engaging in diverse interactions with drugs, including host-guest, hydrogen bonding, and electrostatic interactions. Beyond their inherent properties, CD-MOFs can be customized as drug carriers through two primary strategies: co-crystallization with functional components and surface post-modifications. These tailored modifications pave the way for controlled release manners. They allow for slow and sustained drug release, as well as responsive releases triggered by various factors such as pH levels, glutathione concentrations, or specific cations. Furthermore, CD-MOFs facilitate targeted delivery strategies, like pulmonary or laryngeal delivery, enhancing drug delivery precision. Overall, the adaptability and modifiability of CD-MOFs underscore their potential as a versatile platform for drug delivery, presenting tailored solutions that cater to diverse biomedical and industrial needs.
Collapse
Affiliation(s)
- Na Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lingling Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell campus, OX11 0QS, Oxford, UK; Pharmacology Department, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| |
Collapse
|
3
|
De Gaetano F, Pastorello M, Pistarà V, Rescifina A, Margani F, Barbera V, Ventura CA, Marino A. Rutin/Sulfobutylether-β-Cyclodextrin as a Promising Therapeutic Formulation for Ocular Infection. Pharmaceutics 2024; 16:233. [PMID: 38399286 PMCID: PMC10892075 DOI: 10.3390/pharmaceutics16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment is challenging for scientists due to their low water solubility. In this study, we designed a liquid formulation based on rutin/sulfobutylether-β-cyclodextrin (RTN/SBE-β-CD) inclusion complex for treating ocular infections. The correct stoichiometry and the accurate binding constant were determined by employing SupraFit software (2.5.120) in the UV-vis titration experiment. A deep physical-chemical characterization of the RTN/SBE-β-CD inclusion complex was also performed; it confirmed the predominant formation of a stable complex (Kc, 9660 M-1) in a 1:1 molar ratio, with high water solubility that was 20 times (2.5 mg/mL) higher than the free molecule (0.125 mg/mL), permitting the dissolution of the solid complex within 30 min. NMR studies revealed the involvement of the bicyclic flavonoid moiety in the complexation, which was also confirmed by molecular modeling studies. In vitro, the antibacterial and antibiofilm activity of the formulation was assayed against Staphylococcus aureus and Pseudomonas aeruginosa strains. The results demonstrated a significant activity of the formulation than that of the free molecules.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Martina Pastorello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Antonio Rescifina
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Fatima Margani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| |
Collapse
|
4
|
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2209. [PMID: 37765179 PMCID: PMC10536596 DOI: 10.3390/pharmaceutics15092209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Morin (MRN) is a natural compound with antiangiogenic, antioxidant, anti-inflammatory, and anticancer activity. However, it shows a very low water solubility (28 μg/mL) that reduces its oral absorption, making bioavailability low and unpredictable. To improve MRN solubility and positively affect its biological activity, particularly its antiangiogenic activity, in this work, we prepared the inclusion complexes of MNR with sulfobutylether-β-cyclodextrin (SBE-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes obtained by the freeze-drying method were extensively characterized in solution (phase-solubility studies, UV-Vis titration, and NMR spectroscopy) and in the solid state (TGA, DSC, and WAXD analysis). The complexation significantly increased the water solubility by about 100 times for MRN/HP-β-CD and 115 times for MRN/SBE-β-CD. Furthermore, quantitative dissolution of the complexes was observed within 60 min, whilst 1% of the free drug dissolved in the same experimental time. 1H NMR and UV-Vis titration studies demonstrated both CDs well include the benzoyl moiety of the drug. Additionally, SBE-β-CD could interact with the cinnamoyl moiety of MRN too. The complexes are stable in solution, showing a high value of association constant, that is, 3380 M-1 for MRN/HP-β-CD and 2870 M-1 for MRN/SBE-β-CD. In vivo biological studies on chick embryo chorioallantoic membrane (CAM) and zebrafish embryo models demonstrated the high biocompatibility of the inclusion complexes and the effective increase in antiangiogenic activity of complexed MRN with respect to the free drug.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Fatima Margani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Valeria D’Angelo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| |
Collapse
|
5
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
De Gaetano F, Scala A, Celesti C, Lambertsen Larsen K, Genovese F, Bongiorno C, Leggio L, Iraci N, Iraci N, Mazzaglia A, Ventura CA. Amphiphilic Cyclodextrin Nanoparticles as Delivery System for Idebenone: A Preformulation Study. Molecules 2023; 28:molecules28073023. [PMID: 37049785 PMCID: PMC10096402 DOI: 10.3390/molecules28073023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-β-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer’s Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Fabio Genovese
- Technical, Economic and Technological Institute “Girolamo Caruso”, Via John Fitzgerald Kennedy 2, 91011 Alcamo, Italy
| | - Corrado Bongiorno
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), Strada VIII n. 5-Zona Industriale, 95121 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| |
Collapse
|
8
|
De Gaetano F, Cristiano MC, Paolino D, Celesti C, Iannazzo D, Pistarà V, Iraci N, Ventura CA. Bicalutamide Anticancer Activity Enhancement by Formulation of Soluble Inclusion Complexes with Cyclodextrins. Biomolecules 2022; 12:1716. [PMID: 36421730 PMCID: PMC9687945 DOI: 10.3390/biom12111716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Bicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-β-cyclodextrin (HP-β-CyD) and sulfobutylether-β-cyclodextrin (SBE-β-CyD) to increase the water solubility and anticancer activity of BCL. The inclusion complexes were prepared using the freeze-drying method and were then characterized in a solid state via differential scanning calorimetry and X-ray analysis and in solution via phase-solubility studies and UV-vis and NMR spectroscopy. The BCL/HP-β-CyD and BCL/SBE-β-CyD inclusion complexes were amorphous and rapidly dissolved in water. Both the 1H-NMR spectra and molecular modeling studies confirmed the penetration of the 2-(trifluoromethyl)benzonitrile ring of BCL within the cavity of both cyclodextrins (CyDs). Due to the consistent improvement of the water solubility of BCL, the inclusion complexes showed higher antiproliferative activity toward the human prostate androgen-independent cell lines, DU-145 and PC-3, with respect to free BCL. These results demonstrate the ability of HP-β-CyD and SBE-β-CyD to complex BCL, permitting the realization of liquid formulations with potentially high oral bioavailability and/or possible parenteral administration.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, I-98125 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
9
|
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030860. [PMID: 35164121 PMCID: PMC8839758 DOI: 10.3390/molecules27030860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.
Collapse
|
10
|
Piñeiro Á, Pipkin J, Antle V, Garcia-Fandino R. Remdesivir interactions with sulphobutylether-β-cyclodextrins: A case study using selected substitution patterns. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wei Y, Chen C, Zhai S, Tan M, Zhao J, Zhu X, Wang L, Liu Q, Dai T. Enrofloxacin/florfenicol loaded cyclodextrin metal-organic-framework for drug delivery and controlled release. Drug Deliv 2021; 28:372-379. [PMID: 33517801 PMCID: PMC8725827 DOI: 10.1080/10717544.2021.1879316] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We presented an antibiotic-loaded γ-cyclodextrin metal-organic framework that delivered antibiotics suitable for the treatment of bacterial infections. The γ-cyclodextrin metal-organic framework was developed using γ-cyclodextrin and potassium ion via the ultrasonic method. The antibiotic (florfenicol and enrofloxacin) was primarily encapsulated into the pore structures of γ-CD-MOF, which allowed the sustained release of antibiotics over an extended period of time in vitro and in vivo. Notably, antibiotics-loaded γ-CD-MOF showed much superior activity against bacteria than free antibiotics (lower MIC value) and displayed better long-lasting activity (longer antibacterial time). The antibiotics-loaded γ-CD-MOF showed nontoxic and perfect biocompatibility to mammalian cells and tissues both in vitro and in vivo. These materials thus represent a novel drug-delivery device suitable for antibiotic therapy. This research is of great significance for reducing the generation of bacterial resistance and providing new ideas for the application of γ-CD-MOF.
Collapse
Affiliation(s)
- Yucai Wei
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Chaoxi Chen
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Shuo Zhai
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Min Tan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Juebo Zhao
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Xiaowen Zhu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Lu Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Qun Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Tao Dai
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
Bonaccorso A, Pellitteri R, Ruozi B, Puglia C, Santonocito D, Pignatello R, Musumeci T. Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. NANOMATERIALS 2021; 11:nano11010159. [PMID: 33435146 PMCID: PMC7827715 DOI: 10.3390/nano11010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Background: Curcumin (Cur) shows anti-inflammatory and antioxidant effects on central nervous system diseases. The aim of this study was to develop Cur-loaded polymeric and lipid nanoparticles for intranasal delivery to enhance its stability and increase antioxidant effect on olfactory ensheathing cells (OECs). Methods: The nanosuspensions were subjected to physico-chemical and technological evaluation through photon correlation spectroscopy (PCS), differential scanning calorimetry (DSC) and UV-spectrophotometry. The cytotoxicity studies of nanosuspensions were carried out on OECs. A viability test was performed after 24 h of exposure of OECs to unloaded and curcumin-loaded nanosuspensions. The potential protective effect of Cur was assessed on hypoxic OECs cells. Uptake studies were performed on the same cell cultures. Thermal analysis was performed to evaluate potential interaction of Cur with a 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) biomembrane model. Results: PCS analysis indicated that lipid and polymeric nanosuspensions showed a mean size of 127.10 and 338.20 nm, respectively, high homogeneity and negative zeta potential. Incorporation of Cur into both nanocarriers increased drug stability up to 135 days in cryoprotected freeze-dried nanosuspensions. Cell viability was improved when hypoxic OECs were treated with Cur-loaded polymeric and lipid nanosuspensions compared with the control. Conclusions: Both nanocarriers could improve the stability of Cur as demonstrated by technological studies. Biological studies revealed that both nanocarriers could be used to deliver Cur by intranasal administration for brain targeting.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Debora Santonocito
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| |
Collapse
|
13
|
Li G, Sun X, Wan X, Wang D. Lactoferrin-Loaded PEG/PLA Block Copolymer Targeted With Anti-Transferrin Receptor Antibodies for Alzheimer Disease. Dose Response 2020; 18:1559325820917836. [PMID: 32863801 PMCID: PMC7430085 DOI: 10.1177/1559325820917836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022] Open
Abstract
Last few years, struggles have been reported to develop the nanovesicles for drug delivery via the brain-blood barrier (BBB). Novel drugs, for instance, iAβ5, are efficient to inhibit the aggregates connected to the treatment of Alzheimer disease and are being evaluated, but most of the reports reflect some drawbacks of the drugs to reach the brain in preferred concentrations owing to the less BBB penetrability of the surface dimensions. In this report, we designed and developed a new approach to enhance the transport of drug via BBB, constructed with lactoferrin (Lf)-coated polyethylene glycol-polylactide nanoparticles (Lf-PPN) with superficial monoclonal antibody-functionalized antitransferrin receptor and anti-Aβ to deliver the iAβ5 hooked on the brain. The porcine brain capillary endothelial cells were utilized as BBB typically to examine the framework efficacy and toxicity. The cellular uptake of the immuno-nanoparticles with measured conveyance of the iAβ5 peptide was significantly enhanced and associated with Lf-PPN without monoclonal antibody functionalizations.
Collapse
Affiliation(s)
- Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center, Qingdao, China
| | - Xianghong Sun
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Xiaona Wan
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Dongming Wang
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|