1
|
Tsakiri M, Ghanizadeh Tabriz A, Naziris N, Rahali K, Douroumis D, Demetzos C. Exosome-like genistein-loaded nanoparticles developed by thin-film hydration and 3D-printed Tesla microfluidic chip: A comparative study. Int J Pharm 2024; 651:123788. [PMID: 38185341 DOI: 10.1016/j.ijpharm.2024.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Exosomes are naturally derived information carriers that present interest as drug delivery systems. However, their vague cargo and isolation difficulties hinder their use in clinical practice. To overcome these limitations, we developed exosome-like nanoparticles, consisted of the main lipids of exosomes, using two distinct methods: thin-film hydration and 3D-printed microfluidics. Our novel microfluidic device, fabricated through digital light processing printing, demonstrated a favorable architecture to produce exosome-like nanoparticles. We compared these two techniques by analyzing the physicochemical characteristics (size, size distribution, and ζ-potential) of both unloaded and genistein-loaded exosome-like nanoparticles, using dynamic and electrophoretic light scattering. Our findings revealed that the presence of small lipophilic molecules, cholesterol and/or genistein, influenced the characteristics of the final formulations differently based on the development approach. Regardless of the initial differences of the formulations, all exosome-like nanoparticles, whether loaded with genistein or not, exhibited remarkable colloidal stability over time. Furthermore, an encapsulation efficiency of over 87% for genistein was achieved in all cases. Additionally, thermal analysis uncovered the presence of metastable phases within the membranes, which could impact the drug delivery efficiency. In summary, this study provides a comprehensive comparison between conventional and innovative methods for producing complex liposomal nanosystems, exemplified by exosome-like nanoparticles.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens, Greece
| | - Atabak Ghanizadeh Tabriz
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK; Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens, Greece
| | - Kanza Rahali
- Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Dennis Douroumis
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK; Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens, Greece.
| |
Collapse
|
2
|
Tsichlis I, Manou AP, Manolopoulou V, Matskou K, Chountoulesi M, Pletsa V, Xenakis A, Demetzos C. Development of Liposomal and Liquid Crystalline Lipidic Nanoparticles with Non-Ionic Surfactants for Quercetin Incorporation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5509. [PMID: 37629800 PMCID: PMC10456281 DOI: 10.3390/ma16165509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The aim of the present study is the development, physicochemical characterization, and in vitro cytotoxicity evaluation of both empty and quercetin-loaded HSPC (hydrogenated soy phosphatidylcholine) liposomes, GMO (glyceryl monooleate) liquid crystalline nanoparticles, and PHYT (phytantriol) liquid crystalline nanoparticles. Specifically, HSPC phospholipids were mixed with different non-ionic surfactant molecules (Tween 80 and/or Span 80) for liposomal formulations, whereas both GMO and PHYT lipids were mixed with Span 80 and Tween 80 as alternative stabilizers, as well as with Poloxamer P407 in different ratios for liquid crystalline formulations. Subsequently, their physicochemical properties, such as size, size distribution, and ζ-potential were assessed by the dynamic and electrophoretic light scattering (DLS/ELS) techniques in both aqueous and biological medium with serum proteins. The in vitro biological evaluation of the empty nanosystems was performed by using the MTT cell viability and proliferation assay. Finally, the entrapment efficiency of quercetin was calculated and the differences between the two different categories of lipidic nanoparticles were highlighted. According to the results, the incorporation of the non-ionic surfactants yields a successful stabilization and physicochemical stability of both liposomal and liquid crystalline nanoparticles. Moreover, in combination with an appropriate biosafety in vitro profile, increased encapsulation efficiency of quercetin was achieved. Overall, the addition of surfactants improved the nanosystem's stealth properties. In conclusion, the results indicate that the physicochemical properties were strictly affected by the formulation parameters, such as the type of surfactant.
Collapse
Affiliation(s)
- Ioannis Tsichlis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Athanasia-Paraskevi Manou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Manolopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Konstantina Matskou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| |
Collapse
|
3
|
Zouliati K, Stavropoulou P, Chountoulesi M, Naziris N, Demisli S, Mitsou E, Papadimitriou V, Chatzidaki M, Xenakis A, Demetzos C. Development and evaluation of liposomal nanoparticles incorporating dimethoxycurcumin. In vitro toxicity and permeability studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|