1
|
Pereira DE, de Cássia de Araújo Bidô R, da Costa Alves M, Frazão Tavares de Melo MF, Dos Santos Costa AC, Gomes Dutra LM, de Morais MM, Gomes da Câmara CA, Viera VB, Alves AF, de Araujo WJ, Leite EL, Bruno de Oliveira CJ, Rufino Freitas JC, Barbosa Soares JK. Maternal supplementation with Dipteryx alata Vog. modulates fecal microbiota diversity, accelerates reflex ontogeny, and improves non-associative and spatial memory in the offspring of rats. Brain Res 2024; 1850:149383. [PMID: 39647597 DOI: 10.1016/j.brainres.2024.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Maternal diet plays a crucial role in offspring development, directly affecting neural development and gut microbiota composition. This study aimed to assess if baru almond and oil (Dipteryx alata Vog.) could modulate intestinal microbiota, brain fatty acid profile, and enhance memory in offspring of rats treated during early life stages. Three groups were formed: Control- received distilled water by gavage; Oil- received 2000 mg/kg of baru oil, and Almond - received 2000 mg/kg of baru almond. Somatic development and reflex ontogenesis were evaluated in offspring during the first 21 days. In adolescence and adulthood, memory was tested using Open Field Habituation, Object Recognition, and Morris Water Maze. Brain histology and fatty acid were measured, and fecal microbiota analysis was performed. Both almond and oil groups showed increased PUFAs in breast milk and brains, accelerated reflex ontogeny, improved somatic development and better performance in the memory tests in both life stages (p < 0.05). Supplementation enhanced fecal microbiota abundance associated with neuroprotective effects. The almond group showed a 29 % increase in Eubacterium, Candidates-Arthromitus, Collinsella, and Christensenellaceae-R-7. Both oil and almond groups had higher Blautia and Clostridia-UCG-014 compared to controls. The oil group had about 10 % more Ruminococcus, UCG-005, Acetatifactor, Negativibacillus, and Lachnospiraceae-ND3007 than the others. With the present data, we can observe the safety of baru consumption by pregnant and lactating rats and verify its effects on modulating the microbiota, inducing adequate development of the offspring's nervous system, contributing to anticipated reflex maturation and improving memory.
Collapse
Affiliation(s)
- Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Maciel da Costa Alves
- Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil.
| | | | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and General Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Wydemberg José de Araujo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
2
|
Xie D, Ma Y, Gao C, Pan S. Piezo1 activation on microglial cells exacerbates demyelination in sepsis by influencing the CCL25/GRP78 pathway. Int Immunopharmacol 2024; 142:113045. [PMID: 39236454 DOI: 10.1016/j.intimp.2024.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND In sepsis-associated encephalopathy (SAE), the activation of microglial cells and ensuing neuroinflammation are important in the underlying pathological mechanisms. Increasing evidence suggests that the protein Piezo1 functions as a significant regulator of neuroinflammation. However, the influence of Piezo1 on microglial cells in the context of SAE has not yet been determined. This study aims to investigate the role of Piezo1 in microglial cells in the context of SAE. METHODS By inducing cecal ligation and puncture (CLP), a mouse model of SAE was established, while the control group underwent a sham surgery in which the cecum was exposed without ligation and puncture. Piezo1 knockout mice were employed in this study. Morris water maze tests were conducted between Days 14 and 18 postop to assess both the motor activity and cognitive function. A proteomic analysis was conducted to assess the SAE-related pathways, whereas a Mendelian randomization analysis was conducted to identify the pathways associated with cognitive impairment. Dual-label immunofluorescence and flow cytometry were used to assess the secretion of inflammatory factors, microglial status, and oligodendrocyte development. Electron microscopy was used to evaluate axonal myelination. A western blot analysis was conducted to evaluate the influence of Piezo1 on oligodendrocyte ferroptosis. RESULTS The results of the bioinformatics analysis have revealed the significant involvement of CCL25 in the onset and progression of SAE-induced cognitive impairment. SAE leads to cognitive dysfunction by activating the microglial cells. The release of CCL25 by the activated microglia initiates the demyelination of oligodendrocytes in the hippocampus, resulting in ferroptosis and the disruption of hippocampal functional connectivity. Of note, the genetic knockout of the Piezo1 gene mitigates these changes. The treatment with siRNA targeting Piezo1 effectively reduces the secretion of inflammatory mediators CCL25 and IL-18 by inhibiting the p38 pathway, thus preventing the ferroptosis of oligodendrocytes through the modulation of the CCL25/GPR78 axis. CONCLUSION Piezo1 is involved in the activation of microglia and demyelinating oligodendrocytes in the animal models of SAE, resulting in cognitive impairment. Consequently, targeting Piezo1 suppression can be a promising approach for therapeutic interventions aimed at addressing cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China
| | - Yanli Ma
- Department of Pediatrics, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, 200434 Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China; Department of Emergency, Putuo District Central Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Putuo District, 200062 Shanghai, China.
| |
Collapse
|
3
|
Dai L, Wu Z, Yin L, Cheng L, Zhou Q, Ding F. Exogenous Functional Mitochondria Derived from Bone Mesenchymal Stem Cells That Respond to ROS Can Rescue Neural Cells Following Ischemic Stroke. J Inflamm Res 2024; 17:3383-3395. [PMID: 38803690 PMCID: PMC11129787 DOI: 10.2147/jir.s463692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Upon uptake by stressed cells, functional mitochondria can perform their normal functions, ultimately enhancing the survival of host cells. However, despite the promising results of this approach, there is still a lack of understanding of the specific relationship between nerve cells and functional mitochondria. Methods Functional mitochondria (F-Mito) were isolated from bone marrow-derived mesenchymal stem cells (BMSCs). The ability of microglia cells to internalize F-Mito was evaluated using a middle cerebral artery occlusion (MCAO) model in C57BL/6J mice and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. After OGD/R and F-Mito treatment, the temporal dynamics of intracellular reactive oxygen species (ROS) levels were examined.The relationship between ROS levels and F-Mito uptake was assessed at the individual cell level using MitoSOX, Mitotracker, and HIF-1α labeling. Results Our findings indicate that microglia cells exhibit enhanced mitochondrial uptake compared to astrocytes. Furthermore, internalized F-Mito reduced ROS levels and HIF-1α levels. Importantly, we found that the ROS response in microglia cells following ischemia is a critical regulator of F-Mito internalization, and promoting autophagy in microglia cells might reduce the uptake of ROS and HIF-1α levels. Conclusion It is verified that F-Mito derived from BMSCs play a protective role in ischemia-reperfusion injury, as their weakening reduces microglial cell activation and alleviates neuroinflammation.
Collapse
Affiliation(s)
- Lihua Dai
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Liili Yin
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Longjian Cheng
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Qiang Zhou
- Department of General Surgery, Eighth People’s Hospital, ShangHai, People’s Republic of China
| | - Fei Ding
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| |
Collapse
|
4
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
5
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
6
|
Lipina T, Men X, Blundell M, Salahpour A, Ramsey AJ. Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12825. [PMID: 35705513 PMCID: PMC9744498 DOI: 10.1111/gbb.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.
Collapse
Affiliation(s)
- Tatiana Lipina
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Xiaoyu Men
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Matisse Blundell
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Ali Salahpour
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Amy J. Ramsey
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
8
|
Biney RP, Djankpa FT, Osei SA, Egbenya DL, Aboagye B, Karikari AA, Ussif A, Wiafe GA, Nuertey D. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int J Dev Neurosci 2021; 82:50-62. [PMID: 34755371 DOI: 10.1002/jdn.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022] Open
Abstract
In pregnancy, there is a significant risk for developing embryos to be adversely affected by everyday chemicals such as food additives and environmental toxins. In recent times, several studies have documented the detrimental effect of exposure to such chemicals on the behaviour and neurodevelopment of the offspring. This study evaluated the influence of the food additive, monosodium glutamate (MSG), on behaviour and development in mice. Pregnant dams were exposed to MSG 2 or 4 g/kg or distilled water from gestation day 10-20. On delivery, postnatal day 1 (PN 1), 3 pups were sacrificed and whole brain samples assayed for KCC2 expression by western blot. The remaining pups were housed until PN 43 before commencing behavioural assessment. Their weights were measured at birth and at 3 days intervals until PN 42. The impact of prenatal exposure to MSG on baseline exploratory, anxiety and depression behaviours as well as spatial and working memory was assessed. In utero exposure to 4 g/kg MSG significantly reduced exploratory drive and increased depression-like behaviours but did not exert any significant impact on anxiety-like behaviours (p < 0.01). Additionally, there was a two-fold increase in KCC2 expression in both 2 and 4 g/kg MSG-exposed offspring. CONCLUSION: This study indicates that, in utero exposure to MSG increases the expression of KCC2 and causes significant effect on locomotion and depression-like behaviours but only marginally affects memory function.
Collapse
Affiliation(s)
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Silas Acheampong Osei
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniel Lawer Egbenya
- Department of Anatomy and Cell Biology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akua Afriyie Karikari
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Abdala Ussif
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gideon Akuamoah Wiafe
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Nuertey
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Qiu X, Ping S, Kyle M, Chin L, Zhao LR. SCF + G-CSF treatment in the chronic phase of severe TBI enhances axonal sprouting in the spinal cord and synaptic pruning in the hippocampus. Acta Neuropathol Commun 2021; 9:63. [PMID: 33832542 PMCID: PMC8028149 DOI: 10.1186/s40478-021-01160-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of long-term disability in young adults. An evidence-based treatment for TBI recovery, especially in the chronic phase, is not yet available. Using a severe TBI mouse model, we demonstrate that the neurorestorative efficacy of repeated treatments with stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF + G-CSF) in the chronic phase is superior to SCF + G-CSF single treatment. SCF + G-CSF treatment initiated at 3 months post-TBI enhances contralesional corticospinal tract sprouting into the denervated side of the cervical spinal cord and re-balances the TBI-induced overgrown synapses in the hippocampus by enhancing microglial function of synaptic pruning. These neurorestorative changes are associated with SCF + G-CSF-improved somatosensory-motor function and spatial learning. In the chronic phase of TBI, severe TBI-caused microglial degeneration in the cortex and hippocampus is ameliorated by SCF + G-CSF treatment. These findings reveal the therapeutic potential and possible mechanism of SCF + G-CSF treatment in brain repair during the chronic phase of severe TBI.
Collapse
|
10
|
Frame AK, Lone A, Harris RA, Cumming RC. Simple Protocol for Distinguishing Drug-induced Effects on Spatial Memory Acquisition, Consolidation and Retrieval in Mice Using the Morris Water Maze. Bio Protoc 2019; 9:e3376. [PMID: 33654872 DOI: 10.21769/bioprotoc.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/02/2022] Open
Abstract
The Morris water maze (MWM) is one of the most commonly used tests for assessing spatial learning and memory in mice. While the MWM is highly amenable to testing the effects of memory modifying drugs, most studies do not consider the timing or duration of drug exposure when conducting the MWM assay; factors that can strongly influence the effect of the drug on different stages of memory and interfere with data interpretation. Herein we describe a MWM protocol which offers the advantage of distinguishing the impact of a fast acting intraperitoneally (IP) injected drug on the different stages of spatial memory: acquisition, consolidation, and retrieval. Mice initially undergo habituation to both the MWM apparatus and IP injection procedure over the course of three days. For assessing the effect of a drug on memory acquisition, mice are injected with the drug prior to training sessions over four consecutive days, where mice learn to find an escape platform in a circular water tank using distal spatial cues. To determine the effect of the drug on memory consolidation, mice are injected with the drug immediately after each training session. For testing the effect of a drug on memory retrieval, mice receive mock IP injections on each training day and the drug is IP injected only once, prior to a probe trial, where mice attempt to locate the platform following its removal from the tank. This protocol provides a simple strategy for distinguishing the effect(s) of a CNS acting drug on the different stages of memory.
Collapse
Affiliation(s)
- Ariel K Frame
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Richard A Harris
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Robert C Cumming
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Commins S, Kirby BP. The complexities of behavioural assessment in neurodegenerative disorders: A focus on Alzheimer’s disease. Pharmacol Res 2019; 147:104363. [DOI: 10.1016/j.phrs.2019.104363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
|