1
|
Devecioğlu İ, Güçlü B. Psychophysical detection and learning in freely behaving rats: a probabilistic dynamical model for operant conditioning. J Comput Neurosci 2020; 48:333-353. [PMID: 32643083 DOI: 10.1007/s10827-020-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
We present a stochastic learning model that combines the essential elements of Hebbian and Rescorla-Wagner theories for operant conditioning. The model was used to predict the behavioral data of rats performing a vibrotactile yes/no detection task. Probabilistic nature of learning was implemented by trial-by-trial variability in the random distributions of associative strengths between the sensory and the response representations. By using measures derived from log-likelihoods (corrected Akaike and Bayesian information criteria), the proposed model and its subtypes were compared with each other, and with previous models in the literature, including reinforcement learning model with softmax rule and drift diffusion model. The main difference between these models was the level of stochasticity which was implemented as associative variation or response selection. The proposed model with subject-dependent variance coefficient (SVC) and with trial-dependent variance coefficient (TVC) resulted in better trial-by-trial fits to experimental data than the other tested models based on information criteria. Additionally, surrogate data were simulated with estimated parameters and the performance of the models were compared based on psychophysical measures (A': non-parametric sensitivity index, hits and false alarms on receiver operating characteristics). Especially the TVC model could produce psychophysical measures closer to those of the experimental data than the alternative models. The presented approach is novel for linking psychophysical response measures with learning in a yes/no detection task, and may be used in neural engineering applications.
Collapse
Affiliation(s)
- İsmail Devecioğlu
- Biomedical Engineering Department, Tekirdağ Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey.
| |
Collapse
|
2
|
Karakuş İ, Güçlü B. Psychophysical principles of discrete event-driven vibrotactile feedback for prostheses. Somatosens Mot Res 2020; 37:186-203. [PMID: 32448043 DOI: 10.1080/08990220.2020.1769055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose/aim of the study: We aimed to establish psychophysical principles for non-invasive vibrotactile feedback signalling discrete transition events (e.g., extension to flexion) during use of prostheses, especially for the upper limbs.Materials and methods: Two vibrotactile actuators were used on both upper arms of 10 able-bodied human participants. Absolute thresholds, psychometric functions, and magnitude estimates were measured to equalize the sensation magnitudes for the tested vibrotactile frequencies and skin sites. Then, same-different and pattern recognition tasks were run to evaluate, respectfully, the discrimination and closed-set identification of stimuli with varying parameters (2 frequencies, 2 magnitudes, 2 sites). Finally, parameters of the left/right stimuli were mapped to hypothetical prosthesis events representing object/force and movement type. The stimuli were applied sequentially in accordance with the discrete event-driven feedback paradigm.Results: Reliable psychophysical models could be established for individual participants as verified by repetitive threshold measurements and relative adjustment of stimulus levels based on sensation magnitudes. Discrimination accuracy was higher for magnitude versus frequency comparisons; and magnitude discrimination accuracy was correlated with magnitude estimate differences. Pattern recognition recall/precision rates decreased from ∼0.7 to ∼0.5 for sequential delivery of two stimulus patterns to one arm versus to two arms. Using the patterns as two and three consecutive prosthesis events yielded statistically similar performance rates not correlated with magnitude estimate differences.Conclusions: By careful calibration of stimuli based on psychophysical principles, discrete event-driven vibrotactile feedback can be used to signal manipulated object and movement information with moderate identification rates as shown by confusion matrices.
Collapse
Affiliation(s)
- İpek Karakuş
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
3
|
Ozturk S, Devecioglu I, Beygi M, Atasoy A, Mutlu S, Ozkan M, Guclu B. Real-Time Performance of a Tactile Neuroprosthesis on Awake Behaving Rats. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1053-1062. [PMID: 30990187 DOI: 10.1109/tnsre.2019.2910320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advancement of electrode and equipment technology, neuroprosthetics have become a promising alternative to partially compensate for the loss of sensorimotor function in amputees and patients with neurological diseases. Cortical neural interfaces are suitable especially for spinal cord injuries and amyotrophic lateral sclerosis. Although considerable success has been achieved in the literature by spike decoding of motor signals from the human brain, somatosensory feedback is essential for better motor control, interaction with objects, and the embodiment of prosthetic devices. In this paper, we present a tactile neuroprosthesis for rats based on intracortical microstimulation (ICMS). The rats wore mechanically-isolated boots covered with tactile sensors while performing a psychophysical detection task. The vibrotactile stimuli were measured by the artificial sensors and by using a real-time processor, this information was converted to electrical current pulses for ICMS. Some parameters of the real-time processor algorithm were specific to individual rats and were based on psychometric equivalence functions established earlier. Rats could detect the effects of the vibrotactile stimuli better (i.e., higher sensitivity indices) when the tactile neuroprosthesis was switched on compared to the boot only condition during active movement. In other words, the rats could decode the tactile information embedded in ICMS and use that in a behaviorally relevant manner. The presented animal model without peripheral nerve injury or amputation is also a promising tool to test various hardware and software components of neuroprosthetic systems in general.
Collapse
|
4
|
Vardar Y, Guclu B, Basdogan C. Tactile Masking by Electrovibration. IEEE TRANSACTIONS ON HAPTICS 2018; 11:623-635. [PMID: 30004890 DOI: 10.1109/toh.2018.2855124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Future touch screen applications will include multiple tactile stimuli displayed simultaneously or consecutively to single finger or multiple fingers. These applications should be designed by considering human tactile masking mechanism since it is known that presenting one stimulus may interfere with the perception of the other. In this study, we investigate the effect of masking on the tactile perception of electrovibration displayed on touch screens. Through conducting psychophysical experiments with nine participants, we measured the masked thresholds of sinusoidal electrovibration bursts (125 Hz) under two masking conditions: simultaneous and pedestal. The masking signals were noise bursts, applied at five different sensation levels varying from 2 to 22 dB SL, also presented by electrovibration. For each participant, the thresholds were elevated as linear functions of masking levels for both masking types. We observed that the masking effectiveness was larger with pedestal masking than simultaneous masking. Moreover, in order to investigate the effect of tactile masking on our haptic perception of edge sharpness, we compared the perceived sharpness of edges separating two textured regions displayed with and without various types of masking stimuli. Our results suggest that sharpness perception depends on the local contrast between background and foreground stimuli, which varies as a function of masking amplitude and activation levels of frequency-dependent psychophysical channels.
Collapse
|
5
|
Yıldız MZ, Toker İ, Özkan FB, Güçlü B. Effects of passive and active movement on vibrotactile detection thresholds of the Pacinian channel and forward masking. Somatosens Mot Res 2015; 32:262-72. [PMID: 26443938 DOI: 10.3109/08990220.2015.1091771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the gating effect of passive and active movement on the vibrotactile detection thresholds of the Pacinian (P) psychophysical channel and forward masking. Previous work on gating mostly used electrocutaneous stimulation and did not allow focusing on tactile submodalities. Ten healthy adults participated in our study. Passive movement was achieved by swinging a platform, on which the participant's stimulated hand was attached, manually by a trained operator. The root-mean-square value of the movement speed was kept in a narrow range (slow: 10-20 cm/s, fast: 50-60 cm/s). Active movement was performed by the participant him-/herself using the same apparatus. The tactile stimuli consisted of 250-Hz sinusoidal mechanical vibrations, which were generated by a shaker mounted on the movement platform and applied to the middle fingertip. In the forward-masking experiments, a high-level masking stimulus preceded the test stimulus. Each movement condition was tested separately in a two-interval forced-choice detection task. Both passive and active movement caused a robust gating effect, that is, elevation of thresholds, in the fast speed range. Statistically significant change of thresholds was not found in slow movement conditions. Passive movement yielded higher thresholds than those measured during active movement, but this could not be confirmed statistically. On the other hand, the effect of forward masking was approximately constant as the movement condition varied. These results imply that gating depends on both peripheral and central factors in the P channel. Active movement may have some facilitatory role and produce less gating. Additionally, the results support the hypothesis regarding a critical speed for gating, which may be relevant for daily situations involving vibrations transmitted through grasped objects and for manual exploration.
Collapse
Affiliation(s)
- Mustafa Z Yıldız
- a Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy , Istanbul , Turkey and.,b Faculty of Technology , Electrical and Electronics Engineering Department, Sakarya University, Esentepe Campus , Serdivan , Sakarya , Turkey
| | - İpek Toker
- a Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy , Istanbul , Turkey and
| | - Fatma B Özkan
- a Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy , Istanbul , Turkey and
| | - Burak Güçlü
- a Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy , Istanbul , Turkey and
| |
Collapse
|
6
|
Güçlü B, Tanıdır C, Çanayaz E, Güner B, İpek Toz H, Üneri ÖŞ, Tommerdahl M. Tactile processing in children and adolescents with obsessive–compulsive disorder. Somatosens Mot Res 2015; 32:163-71. [DOI: 10.3109/08990220.2015.1023950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Devecioğlu İ, Güçlü B. A novel vibrotactile system for stimulating the glabrous skin of awake freely behaving rats during operant conditioning. J Neurosci Methods 2015; 242:41-51. [PMID: 25593046 DOI: 10.1016/j.jneumeth.2015.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
|
8
|
Yildiz MZ, Güçlü B. Relationship between vibrotactile detection threshold in the Pacinian channel and complex mechanical modulus of the human glabrous skin. Somatosens Mot Res 2013; 30:37-47. [DOI: 10.3109/08990220.2012.754754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
GüÇlü B, Mahoney GK, Pawson LJ, Pack AK, Smith RL, Bolanowski SJ. Localization of Merkel cells in the monkey skin: An anatomical model. Somatosens Mot Res 2009; 25:123-38. [DOI: 10.1080/08990220802131234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Burak GüÇlü
- Institute for Sensory Research, Syracuse, NY, USA
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey
| | - Greer K. Mahoney
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Lorraine J. Pawson
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Adam K. Pack
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biology, Utica College, Utica, NY, USA
| | - Robert L. Smith
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Stanley J. Bolanowski
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
10
|
Gescheider GA, Güçlü B, Sexton JL, Karalunas S, Fontana A. Spatial summation in the tactile sensory system: probability summation and neural integration. Somatosens Mot Res 2006; 22:255-68. [PMID: 16503579 DOI: 10.1080/08990220500420236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5 cm2 and through 0.05 cm2 contactors. Thresholds were approximately 13 dB lower when the area of the contactor was 1.5 cm2 than when it was 0.05 cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5 cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.
Collapse
|