1
|
Dong Y, Zhou D, Zhang B, Xu X, Zhang J. Development of a real-time recombinase-aided amplification assay for rapid and sensitive detection of Edwardsiella piscicida. Front Cell Infect Microbiol 2024; 14:1355056. [PMID: 38606294 PMCID: PMC11007066 DOI: 10.3389/fcimb.2024.1355056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Edwardsiella piscicida, a significant intracellular pathogen, is widely distributed in aquatic environments and causes systemic infection in various species. Therefore, it's essential to develop a rapid, uncomplicated and sensitive method for detection of E. piscicida in order to control the transmission of this pathogen effectively. The recombinase-aided amplification (RAA) assay is a newly developed, rapid detection method that has been utilized for various pathogens. In the present study, a real-time RAA (RT-RAA) assay, targeting the conserved positions of the EvpP gene, was successfully established for the detection of E. piscicida. This assay can be performed in a one-step single tube reaction at a temperature of 39°C within 20 min. The RT-RAA assay exhibited a sensitivity of 42 copies per reaction at a 95% probability, which was comparable to the sensitivity of real-time quantitative PCR (qPCR) assay. The specificity assay confirmed that the RT-RAA assay specifically targeted E. piscicida without any cross-reactivity with other important marine bacterial pathogens. Moreover, when clinical specimens were utilized, a perfect agreement of 100% was achieved between the RT-RAA and qPCR assays, resulting a kappa value of 1. These findings indicated that the established RT-RAA assay provided a viable alternative for the rapid, sensitive, and specific detection of E. piscicida.
Collapse
Affiliation(s)
- Yuchen Dong
- School of Ocean, Yantai University, Yantai, China
| | - Dandan Zhou
- School of Ocean, Yantai University, Yantai, China
| | - Binzhe Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Xiaoying Xu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
2
|
An L, Chan JL, Nguyen M, Yang S, Deville JG. Case Report: Disseminated Edwardsiella tarda infection in an immunocompromised patient. Front Cell Infect Microbiol 2023; 13:1292768. [PMID: 38053529 PMCID: PMC10694257 DOI: 10.3389/fcimb.2023.1292768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Human infection caused by bacteria of the Edwardsiella genus is rare and most often presents with gastroenteritis that rarely requires antibiotics. Our case report describes a medically complex patient with chronic steroid use contributing to an immunocompromised state, who presented with fever and abdominal pain. The patient was later found to have Edwardsiella tarda (E. tarda) bacteremia and underwent paracentesis confirming E. tarda bacterial peritonitis requiring a prolonged antibiotic course. This case report aims to illustrate the presentation, diagnosis, and management of an uncommon infection that can have severe complications especially among immunocompromised patients.
Collapse
Affiliation(s)
- Lucia An
- University of California, Los Angeles (UCLA) Mattel Children’s Hospital, Department of Pediatrics, Division of Pediatric Hospital Medicine, Los Angeles, CA, United States
| | - June L. Chan
- University of California, Los Angeles (UCLA) Clinical Microbiology Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Margaret Nguyen
- University of California, Los Angeles (UCLA) Mattel Children’s Hospital, Department of Pediatrics, Division of Pediatric Hospital Medicine, Los Angeles, CA, United States
| | - Shangxin Yang
- University of California, Los Angeles (UCLA) Clinical Microbiology Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Jaime G. Deville
- University of California, Los Angeles (UCLA) Mattel Children’s Hospital, Department of Pediatrics, Division of Pediatric Infectious Disease, Los Angeles, CA, United States
| |
Collapse
|
3
|
Hu K, Li Y, Wang F, Liu J, Li Y, Zhao Q, Zheng X, Zhu N, Yu X, Fang S, Huang J. A loop-mediated isothermal amplification-based microfluidic chip for triplex detection of shrimp pathogens. JOURNAL OF FISH DISEASES 2023; 46:137-146. [PMID: 36336976 DOI: 10.1111/jfd.13727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Decapod iridescent virus 1 (DIV1), White spot syndrome virus (WSSV), and Enterocytozoon hepatopenaei (EHP) pose serious threats to the shrimp farming. To date, early detection remains an important way to control the occurrence and diffusion of these pathogens. Here, we developed for the first time, a loop-mediated isothermal amplification (LAMP)-based microfluidic chip detection system, which could detect DIV1, WSSV, and EHP simultaneously. The limits of detection (LoD) of the system were 10 copies/reaction for EHP and DIV1, and 102 copies/reaction for WSSV. The entire detection procedure could be completed rapidly in 40 min at 63°C with 100% specificity and had no cross-reaction with other common shrimp pathogens. This newly established method was further validated using 94 Penaeus vannamei clinical samples, which were comparable to a typical qPCR assay and revealed good stability and reproducibility. These results illustrate that this LAMP microfluidic chip detection system allows rapid triplex pathogen analysis and could satisfy the demands of the field and routine diagnoses in aquaculture.
Collapse
Affiliation(s)
- Keshun Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Feng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jianying Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuanyuan Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qian Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaoye Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Ningyu Zhu
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Shaohua Fang
- Zhejiang Orient Gene Biotech Company Limited, Huzhou, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
4
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
5
|
Zhou QJ, Lu JF, Su XR, Jin JL, Li SY, Zhou Y, Wang L, Shao XB, Wang YH, Yan MC, Li MY, Chen J. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. JOURNAL OF FISH DISEASES 2021; 44:401-413. [PMID: 33340375 DOI: 10.1111/jfd.13325] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1 pg/μl for genomic DNA of tested bacteria and 10-4 to 10-5 pg/μl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.
Collapse
Affiliation(s)
- Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Fei Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiu-Rong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jing-Lei Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shang-Yang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Wang
- CapitalBio Corporation, Beijing, China
| | - Xin-Bin Shao
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Yao-Hua Wang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Mao-Cang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Ming-Yun Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Zhong R, Liu S, Wang X, Zhang G, Gong N, Wang M, Sun Y. A real-time isothermal amplification based portable microfluidic system for simple and reliable detection of Vibrio splendidus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2985-2994. [PMID: 32930158 DOI: 10.1039/d0ay00566e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spread of infectious diseases among aquaculture species has a serious impact on the aquaculture industry. Simple, specific and low-cost detection methods are urgently needed for early diagnosis and timely treatment, particularly for on-site identifying and tracking of pathogens. Vibrio splendidus (V. splendidus) is regarded as one of the main pathogenic bacteria causing skin ulcerative syndrome in cultured sea cucumbers, leading to massive mortality and severe economic losses. We herein present a microfluidic-based real-time fluorogenic loop-mediated isothermal amplification (LAMP) system for simple and reliable detection of V. splendidus. A LAMP primer set with six primers (arsB1) specifically targeting the arsB gene of V. splendidus was successfully designed and tested on the portable microfluidic system for the first time. Only a single step of sample loading using a pipette is required to fill an array of reaction wells (with 10 or 18 wells) in a disposable chip for multiplex detection. A dedicated plastic shell is then utilized to tightly seal the openings of the chip by buckling to prevent contamination and evaporation. Up to four chips (one sample per chip) can be held in the stand-alone and inexpensive microdevice simultaneously, enabling on-demand detection of multiple samples in a single run. Reproducible (relatively low intra- and inter-chip variability) and sensitive (as few as ∼20 CFU, Colony-Forming Units, per reaction well) on-chip arsB1-LAMP assay was demonstrated by using diluted lysate of V. splendidus. A linear standard curve (R2 > 0.98) was attained over the template concentration range of 5 × 103 to 5 × 106 CFU mL-1. V. splendidus can be detected in samples containing different bacteria, indicating the feasibility of the portable microfluidic LAMP system for parallel detection of multiple bacterial pathogens. The proposed on-chip LAMP assay is simple to operate, reliable for amplification, flexible in detection and cost-effective in instrumentation and testing, holding great potential for on-site rapid detection and routine monitoring of aquaculture pathogens.
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Shilin Liu
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Xiaohui Wang
- Dalian University, Dalian Economic & Technical Development Zone, Dalian 116622, China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co., Ltd., Zhongguancun Life Science Park, Beijing 102206, China
| | - Ning Gong
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Mengyu Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
7
|
Zhong R, Liu S, Zhang G, Wang M, Sun Y. iso-μmGene: an isothermal amplification-based portable microfluidic system for simple, reliable and flexibly multiplexed genetic identification and quantification. Analyst 2020; 145:4627-4636. [DOI: 10.1039/d0an00560f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a portable microfluidic LAMP system (iso-μmGene) with features of multi-well chips for convenient filling and reliable sealing, flexible detection throughput, and stand-alone and well-performing point of care device for genetic testing.
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Shilin Liu
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co
- Ltd
- Beijing 102206
- China
| | - Mengyu Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Yeqing Sun
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| |
Collapse
|