1
|
Sharma R, Jindal R, Jhamb N, Banaee M, Faggio C. Lead Nitrate (Pb(NO 3) 2) Toxicity Effects on DNA Structure and Histopathological Damage in Gills of Common Carp (Cyprinus carpio). Microsc Res Tech 2025; 88:810-817. [PMID: 39578944 PMCID: PMC11842955 DOI: 10.1002/jemt.24748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The toxic impact of environmentally relevant nominal sub-lethal concentration of lead nitrate (23 mg/L) on the gills of Cyprinus carpio after 30 days of exposure was assessed. Structural alterations were analyzed through histopathology, and the DNA damage rate in peripheral erythrocytes was evaluated by alkaline comet assay. A significant deviation in the gill histoarchitecture was observed compared to the control group. Significant changes, including the curling of secondary lamellae, loss of filaments, necrosis, hyperplasia, hypertrophy of cells of primary filament, and vacuolization, were found in the fish exposed to nominal sub-lethal concentration of lead nitrate. Moreover, the comet assay showed lead nitrate-induced DNA damage, evidenced by the length of the DNA "tail" in the exposed fish. The findings of this study strongly indicated that lead nitrate, even at sub-lethal levels, could significantly alter the overall physiology of the fish. This situation could lead to severe ecological consequences.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of BiosciencesUniversity Institute of Biotechnology, Chandigarh UniversityGharuanPunjabIndia
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of ZoologyPanjab UniversityChandigarhIndia
| | - Nikhil Jhamb
- Aquatic Biology Laboratory, Department of ZoologyPanjab UniversityChandigarhIndia
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural ResourcesBehbahan Khatam Alanbia University of TechnologyBehbahanIran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
- Department of Eco‐Sustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
2
|
Chen H, Chernick M, Dong W, Xie L, Hinton DE. The role of chorion integrity on the bioaccumulation and toxicity of selenium nanoparticles in Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107170. [PMID: 39586123 DOI: 10.1016/j.aquatox.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Selenium nanoparticles (nano-Se) have a wide range of biomedical and agricultural applications. However, there is little information on the potential toxicity of nano-Se once it enters the environment, particularly in fish. The first line of defense from contaminants that embryonic fish have is the chorion, but the degree to which the chorion protects the developing embryo is unknown. Japanese medaka (Oryzias latipes) embryos were exposed to nano-Se in a wide range of concentrations (0.1-400 µM). The importance of chorion integrity was evaluated by exposing embryos to 16 nm nano-Se under four degrees of dechorionation: intact, roughened, partially-dechorionated, fully-dechorionated. Then, effects of particle size on embryos and larvae were determined using four sizes of nano-Se particles (16, 25-50, 50, 100 nm). The results showed that nano-Se exposure reduced survival, development, and hatching. Nano-Se was observed to adsorb on the chorion, with the amount decreasing with increased degree of dechorionation. Toxicity increased with increasing degree of dechorionation, and smaller-sized nano-Se crossed intact chorion more readily and resulted in higher toxicity than larger ones. In larvae, nano-Se accumulated on the skin and was more toxic compared to embryos. This study demonstrated the importance of the chorion in protecting developing embryos and effects of nanoparticle size on its bioavailability and subsequent toxicity.
Collapse
Affiliation(s)
- Hongxing Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| |
Collapse
|
3
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Fahmy HM, Mosleh AM, El-Sayed AA, El-Sherif AA. Novel palladium(II) and Zinc(II) Schiff base complexes: Synthesis, biophysical studies, and anticancer activity investigation. J Trace Elem Med Biol 2023; 79:127236. [PMID: 37285632 DOI: 10.1016/j.jtemb.2023.127236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Schiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy. METHODS The current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)- 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells. RESULTS The Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels. CONCLUSION It can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
5
|
Khayal EES, Ibrahim HM, Shalaby AM, Alabiad MA, El-Sheikh AA. Combined lead and zinc oxide-nanoparticles induced thyroid toxicity through 8-OHdG oxidative stress-mediated inflammation, apoptosis, and Nrf2 activation in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2589-2604. [PMID: 34553816 DOI: 10.1002/tox.23373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
A human is exposed to a chemical mixture rather than a single chemical, particularly with the wide spread of nanomaterials. Therefore, the present study evaluated the combined exposure of lead acetate (Pb) and zinc oxide-nanoparticles (ZnO-NPs) compared to each metal alone on the thyroid gland of adult rats. A total of 30 adult male albino rats were divided into four groups, group I (control), group II received Pb (10 mg/kg), group III received ZnO-NPs (85 mg/kg) and group IV co-administrated the two metals in the same previous doses. The materials were gavaged for 8 weeks. The toxicity was assessed through several biochemical parameters. Our results revealed significant body weight reduction relative to increased thyroid weights, decreased both of serum-free triiodothyronine (FT3), tetra-iodothyronine (FT4), increased thyroid-stimulating hormone (TSH), increased serum and thyroid levels of Pb and zinc, significant elevation in tumor necrosis factor-α (TNF-α), reduction in interleukin 4 (IL4), upregulation of Bax, and downregulation of Bcl-2 genes. Additionally, there was significant overexpression of nuclear factor erythroid 2-related factor 2(Nrf2), 8-Hydroxydeoxyguanosine(8-OHdG), the elevation of tissues malondialdehyde (MDA), reduction of tissues total antioxidant capacity (TAC), and disruptive thyroid structural alterations in all metals groups with marked changes in the combined metals group. In conclusion, the combined exposure of Pb and ZnO-NPs induced pronounced toxic thyroid injury, pointing to additive effects in rats than the individual metal effects through different significant changes of disruptive thyroid structural alterations related to the loading of thyroid tissues with Pb and zinc metals producing oxidative stress that mediated inflammation and apoptosis.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Zulfahmi I, Rahmi A, Muliari M, Akmal Y, Paujiah E, Sumon KA, Rahman MM. Exposure to Lead Nitrate Alters Growth and Haematological Parameters of Milkfish (Chanos chanos). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:860-867. [PMID: 34382093 DOI: 10.1007/s00128-021-03344-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
To date, the effects of lead on the growth and haematological parameters of milkfish are still not well understood. For this reason the present study seeks to explain this conundrum. Sub-adult female milkfish were exposed to four concentrations of lead nitrate (0 mg/l, 42.64 mg/l, 63.97 mg/l and 85.29 mg/l) for 40 days. Results revealed that exposure to lead nitrate caused significant changes in growth and haematological parameters of milkfish. Weight gain, length gain, specific growth rate, feed efficiency, and feed conversion ratio of milkfish declined significantly at the highest concentration treatment. Moreover, lead nitrate exposure significantly decreased the value of red blood cells, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration, along with a marked increase in mean corpuscular volume and mean corpuscular hemoglobin. Several erythrocyte malformations to cells including swelling, deformation, doubling, binucleus, laceration of the membrane, hemolyzation and vacuolation were all observed.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Alfinatul Rahmi
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Muliari Muliari
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Bireuen, 24261, Indonesia
| | - Yusrizal Akmal
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Bireuen, 24261, Indonesia
| | - Epa Paujiah
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Sunan Gunung Djati, Bandung, 40614, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19169-19184. [PMID: 31286372 DOI: 10.1007/s11356-019-05514-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
To investigate the influence of Moringa seed extract (MSE) on the cerebral Nrf2/NQO1 signaling in TiO2-NPs-induced brain damage, 80 male albino rats were divided into four groups (n = 20); group I was used as a control, group II received TiO2-NPs (500 mg/kg b.w/day orally) for 14 days, group III received MSE (100 mg/kg b.w/day orally) for 30 days, and group IV received MSE an hour before TiO2-NPs administration with the same doses as before. Administration of TiO2-NPs was started on the 17th day for both groups (II) and (IV). Administration of MSE significantly increased the cerebral mitochondrial viability and Nrf2 level with a simultaneous increase of NQO1 mRNA expression. This designates a powerful antioxidant effect of MSE which is indicated by a significant reduction of INOS expression, MDA, TOS, OSI levels, and DNA fragmentation % with a significant increase of GSH concentration, SOD activities, and TAC. MSE possesses an anti-inflammatory effect by a significant reduction of IL-1β and TNF-α levels, and anti-apoptotic effect manifested by a significant reduction of caspase-3 and Fas levels. In harmonization, dopamine, serotonin concentrations, and acetylcholinesterase activities return back to normal as compared to control group. These results were confirmed by the histopathological features which were alleviated with MSE administration. In conclusion, Nrf2 plays a pivotal role in the mechanism of TiO2-NPs cerebral toxicity and MSE as a Nrf2 activator can provide a powerful cerebroprotective effect, whereas MSE increased the Nrf2 expression and consequently restore the antioxidant activity of brain cells by increasing NQO1 gene expression and cerebral mitochondrial viability as well as inhibition of pro-inflammatory and apoptotic mediators.
Collapse
Affiliation(s)
- Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Khalid S Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
8
|
Giri SS, Jun JW, Yun S, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Park SC, Sukumaran V. Characterisation of Lactic Acid Bacteria Isolated from the Gut of Cyprinus carpio That May Be Effective Against Lead Toxicity. Probiotics Antimicrob Proteins 2019; 11:65-73. [PMID: 29285742 DOI: 10.1007/s12602-017-9367-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was conducted to isolate and characterise Pb-resistant lactic acid bacteria (LAB), and thus determine their potential for use as probiotics against Pb toxicity. A total of 107 Pb-resistant LAB strains were isolated from the gut content of Cyprinus carpio, of which 41 were established to be gram-positive and catalase-negative. Investigation of the Pb-binding ability of these isolated LAB identified seven strains (P2, P6, P7, P9, P16, P19 and P22) with comparatively high Pb-binding activities. These were selected for further screening to establish their Pb tolerance, anti-oxidative capacity and in vitro probiotic characteristics. Strain P16 exhibited both the highest Pb-binding and a relatively good antioxidant capacity. Furthermore, P16 displayed a high survival rate during 4 h of exposure to both low-pH (2.5-3.5) conditions and 10.0% fish bile, and a strong capacity to adhere to fish intestinal mucus (62.4%). Furthermore, P16 showed strong antibacterial activities against all tested fish pathogens. Strains P6, P9, P16, P19 and P22 were susceptible to a range of tested antibiotics, but not to vancomycin. Thus, of the isolated lactobacilli, strain P16 exhibited the best Pb-binding ability, a high level of antioxidant activity and satisfactory in vitro probiotic properties. Biochemical and 16S-rRNA gene analyses identified P16 as Lactobacillus reuteri. Thus, the results of the conducted in vitro tests suggest that the fish-associated P16 Lact. reuteri strain is a promising candidate probiotic, which should undergo further investigation to assess its suitability for use in protecting against lead-exposure-induced toxicities in aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,Department of Biotechnology, Periyar Maniammai University, Thanjavur, Tamil Nadu, 613403, India
| | - Jin Woo Jun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - V Sukumaran
- Department of Biotechnology, Periyar Maniammai University, Thanjavur, Tamil Nadu, 613403, India. .,Department of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, Tamil Nadu, 613007, India.
| |
Collapse
|
9
|
Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Kim KI, Kim JH. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:101-108. [PMID: 30884452 DOI: 10.1016/j.etap.2019.03.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a highly toxic metal in aquatic environments. Fish are at the top of the food chain in most aquatic environments, and are the most susceptible to the toxic effects of Pb exposure. In addition, fish are one of the most abundant vertebrates, and they can directly affect humans through food intake; therefore, fish can be used to assess the extent of environmental pollution in an aquatic environment. Pb-induced toxicity in fish exposed to toxicants is primarily induced by bioaccumulation in specific tissues, and the accumulation mechanisms vary depending on water habitat (freshwater or seawater) and pathway (waterborne or dietary exposure). Pb accumulation in fish tissues causes oxidative stress due to excessive ROS production. Oxidative stress by Pb exposure induces synaptic damage and neurotransmitter malfunction in fish as neurotoxicity. Moreover, Pb exposure influences immune responses in fish as an immune-toxicant. Therefore, the purpose of this review was to examine the various toxic effects of Pb exposure, including bioaccumulation, oxidative stress, neurotoxicity, and immune responses, and to identify indicators to evaluate the extent of Pb toxicity by based on the level of Pb exposure.
Collapse
Affiliation(s)
- Ju-Wook Lee
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Hoon Choi
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Yue Jai Kang
- Sun Moon University, Department of Aquatic Life and Medical Science, Asan-si, South Korea
| | - Kwang Il Kim
- Pathology Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jun-Hwan Kim
- Fisheries Research & Development Institute, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Taean, South Korea.
| |
Collapse
|
10
|
Kurhaluk N. Formation of an antioxidant profile in the sea trout (Salmo trutta m. trutta L.) from the Slupia River. ZOOLOGY 2019; 133:54-65. [PMID: 30979390 DOI: 10.1016/j.zool.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Using a stage- and sex-based multivariate significance tests on the sea trout Salmo trutta m. trutta L. model, we show dependencies in the balance between lipid peroxidation processes, levels of carbonyl derivatives, and activity of antioxidant enzymes (superoxide dismutase SOD, catalase CAT, glutathione reductase GR, and peroxidase GPx) in the processes of antioxidant profile formation during the fish growing process. The study was aimed at examination of the relationships between the biomarkers of oxidative stress estimated by the total antioxidant status as well as the dependencies between the sex (male, female) and developmental stage of the wild sea trout from the Slupia River and its catchment area rivers. Functioning of the pro/antioxidant balance of the liver tissue reflected the course of the individual developmental stages of the trout and was associated with significant intensification of lipoperoxidation, oxidative modification of proteins, and reduction of the total antioxidant capacity of fish along with age. Formation of a holistic model for the analysis of the involvement of all parameters of antioxidant protection in all stages of development and sex allowed us to obtain the following rank order for the level of lipoperoxidation processes, modified proteins, and antioxidant enzyme complex: CAT > SOD > GPx > GR and TBARS > OMP KD > TAC > OMP AD.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Physiology, Institute of Biology and Environmental Protection, Pomeranian University of Slupsk, Arciszewskiego 22b Str., 76-200, Slupsk, Poland.
| |
Collapse
|
11
|
Ding Z, Kong Y, Shao X, Zhang Y, Ren C, Zhao X, Yu W, Jiang T, Ye J. Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile Oriental river prawn (Macrobrachium nipponense) to chronic lead exposure. CHEMOSPHERE 2019; 217:289-297. [PMID: 30419383 DOI: 10.1016/j.chemosphere.2018.11.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Understanding the mechanisms of metal toxicity to organisms farmed for food may suggest mitigation strategies. We determined the 24-, 48-, 72-, and 96-h median lethal concentrations of lead in juvenile oriental river prawn (Macrobrachium nipponense). The prawns were then exposed to sub-lethal concentrations (13.13 and 26.26 μg/L) of lead for 60 days and growth, antioxidant enzyme activity, intestinal morphology, and metabolite profiles were assessed. Prawns exposed to 26.26 μg/L but not to 13.13 μg/L lead exhibited lower weight gain than controls. The lead burden in muscle was 0.067 and 0.25 μg/g of dry weight exposed to 13.13 and 26.26 μg/L, respectively. Levels of glutamic oxaloacetic transaminase and glutamic-pyruvic transaminase were not altered following exposure. Exposure increased malondialdehyde activity in the hepatopancreas and decreased superoxide dismutase and glutathione peroxidase activities. Catalase activity first increased and then decreased as lead concentrations increased. Some intestinal epithelial cells disassociated from the basement membrane in prawns exposed to 13.13 μg/L lead. Intestinal epithelial cells in prawns exposed to 26.26 μg/L lead separated completely from the basement membrane. Gas chromatography-mass spectrometry metabolomics assays showed the 13.13-μg/L exposure did not elicit significant metabolic alterations. Exposure to 26.26 μg/L lead differentially up-regulated 58 metabolites and down-regulated 21 metabolites. The metabolites identified were involved in galactose, purine, glutathione, and carbon metabolism, biosynthesis of amino acids and steroids, and neuroactive ligand-receptor interaction. These data indicate that chronic lead exposure can adversely affect growth, increase accumulation in muscle, impair intestinal morphology, and induce oxidant stress or neurotoxicity-related effects in M. nipponense.
Collapse
Affiliation(s)
- Zhili Ding
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China.
| | - Youqin Kong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xianping Shao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Yixiang Zhang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Cicheng Ren
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xiaoman Zhao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Wangshu Yu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Tingqi Jiang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jinyun Ye
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
12
|
Leclaire S, Chatelain M, Pessato A, Buatois B, Frantz A, Gasparini J. Pigeon odor varies with experimental exposure to trace metal pollution. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:76-85. [PMID: 30506322 DOI: 10.1007/s10646-018-2001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Trace metals are chemical pollutants that have well-known noxious effects on wildlife and that are current major environmental issues in urban habitats. Previous studies have demonstrated their negative (e.g. lead) or positive (e.g. zinc) effects on body condition, immunity and reproductive success. Because of their effects on condition, trace metals are likely to influence the production of condition-dependent ornaments. The last decade has revealed that bird odors, like mammal odors, can convey information on individual quality and might be used as secondary sexual ornaments. Here, we used solid-phase microextraction headspace sampling with gas chromatography-mass spectrometry to investigate whether plumage scent varied with experimental supplementation in lead and/or zinc in feral pigeons. Zinc supplementation (alone or in combination with lead) changed the proportion of several volatiles, including an increase in the proportion of hydroxy-esters. The production of these esters, that most likely originate from preen gland secretions, may be costly and might thus be reduced by stress induced by zinc deficiency. Although lead is known to negatively impact pigeon condition, it did not statistically affect feather scent, despite most of the volatiles that increased with zinc exposure tended to be decreased in lead-supplemented pigeons. Further studies should evaluate the functions of plumage volatiles to predict how trace metals can impact bird fitness.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), 118 route de Narbonne, Toulouse, 31062, France.
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France.
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France.
| | - Marion Chatelain
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
- Wild Urban Evolution and Ecology Lab, Center of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-097, Poland
| | - Anaïs Pessato
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
- Centre for Integrative Ecology, Deakin University, Geelong Waurn Ponds Campus, Victoria, 3217, Australia
| | - Bruno Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
| | - Adrien Frantz
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| | - Julien Gasparini
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| |
Collapse
|
13
|
Dai J, Zhang L, Du X, Zhang P, Li W, Guo X, Li Y. Effect of Lead on Antioxidant Ability and Immune Responses of Crucian Carp. Biol Trace Elem Res 2018; 186:546-553. [PMID: 29594948 DOI: 10.1007/s12011-018-1316-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/20/2018] [Indexed: 02/01/2023]
Abstract
The aim of this study was to explore the effects of lead exposure on the antioxidant and immune responses of Crucian carp. Three hundred sixty healthy Crucian carp were randomly grouped into four groups and exposed to different doses of lead (0, 0.05, 0.5, and 1 mg/L). Fish were sampled at 30 and 60 days, respectively, and antioxidant capability, immune parameters, ALAD activity, and immune-related genes were assessed. The results showed that T-AOC and GSH activities of the liver were significantly increased in 60 days (P < 0.05); the activities of SOD, CAT, T-AOC, and GSH were significantly increased (P < 0.05) compared to the control in the kidney in 60 days. With an increase in Pb dose, the activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to the control. Compared with the control group, the activity of ALAD in the lead-exposed group decreased significantly (P < 0.05). The expression of the HSP70, tumor necrosis factor-α (TNF-α), interleukins (IL-10), and immunoglobulin M genes was all enhanced in lead-exposed group, whereas lysozyme gene expression was decreased. The results indicated that lead induced oxidative stress and had immunotoxic effects on Crucian carp.
Collapse
Affiliation(s)
- Jing Dai
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Linbo Zhang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xiaoyan Du
- Freshwater Fisheries Research Institute of Jilin Province, Changchun, 130000, China
| | - Peijun Zhang
- Health monitoring and inspection center of Jilin Province, Changchun, 130062, China
| | - Wei Li
- China-Japan union Hospital of Jilin University, Jilin University, Changchun, 130000, China
| | - Xiyao Guo
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
| |
Collapse
|
14
|
Attia H, Nounou H, Shalaby M. Zinc Oxide Nanoparticles Induced Oxidative DNA Damage, Inflammation and Apoptosis in Rat's Brain after Oral Exposure. TOXICS 2018; 6:E29. [PMID: 29861430 PMCID: PMC6027438 DOI: 10.3390/toxics6020029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/19/2022]
Abstract
Growing evidences demonstrated that zinc oxide nanoparticles (ZnONPs) could reach the brain after oral ingestion; however, the "neurotoxicity of" ZnONPs after oral exposure has not been fully investigated. This study aimed to explore the "neurotoxicity of" ZnONPs (.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Howaida Nounou
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria 21111, Egypt.
| | - Manal Shalaby
- Department of Medical Biotechnology, Institute of Genetic Engineering City of Scientific Research and biotechnological applications, Borg El Arab, Alexandria 21111, Egypt.
| |
Collapse
|
15
|
Shobana C, Rangasamy B, Poopal RK, Renuka S, Ramesh M. Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11812-11832. [PMID: 29446018 DOI: 10.1007/s11356-018-1454-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present investigation is to assess the sublethal toxicity of biologically synthesized silver nanoparticles (Ag NPs) in Indian major carp Labeo rohita. Ag NPs used in the study were synthesized by using AgNO3 with aqueous leaf extract of Piper nigrum. Median lethal concentration (LC50) of synthesized Ag NPs was determined for 96 h (25 μg/L); 2.5 μg/L (1/10th LC50) and 5 μg/L (1/5th LC50) were taken as sublethal concentrations to evaluate the toxicity for 35 days. The results of the TEM, SEM, and EDX analyses revealed that Ag NPs were considerably accumulated in the gill, liver, and kidney of fish at both concentrations (2.5 and 5 μg/L). Consequently, the activity of the antioxidant enzymes, SOD and CAT, was significantly (P < 0.05) decreased in the gill, liver, and kidney when compared to the control group during the study period. However, lipid peroxidase (LPO) activity in the gill, liver, and kidney was significantly (P < 0.05) increased, and the result concluded a possible sign of free radical-induced oxidative stress in Ag NP-exposed fish than the sham-exposed individuals. The histopathological study also confirmed the alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic necrosis, pyknotic nuclei, increased intracellular space, and shrinkage of glomerulus elicited by Ag NPs in the gill, liver, and kidney of Labeo rohita with two different concentrations. The findings of the present study revealed that green synthesis of Ag NPs from Piper nigrum at sublethal concentrations leads to accumulation of Ag, oxidative stress, and histopathological alterations in the target organs of the fish, Labeo rohita.
Collapse
Affiliation(s)
- Chellappan Shobana
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Rama Krishnan Poopal
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
- Environmental Toxicology and Toxicogenomics Laboratory, Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Sivashankar Renuka
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
16
|
Zhang T, Pan JF, Hunt DE, Chen M, Wang B. Organic matter modifies biochemical but not most behavioral responses of the clam Ruditapes philippinarum to nanosilver exposure. MARINE ENVIRONMENTAL RESEARCH 2018; 133:105-113. [PMID: 29254654 DOI: 10.1016/j.marenvres.2017.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Adsorption of dissolved organic matter (DOM) can alter the environmental fate, bioavailability and toxicity of silver nanoparticles (Ag NPs). However, a number of questions remain about DOM's ability to modify nanotoxicity. Here, we examine the impact of humic acid (HA, as a model DOM) on the toxicity of Ag NPs (10 μg L-1) in the marine clam Ruditapes philippinarum. Results showed that DOM additions to Ag NP treatments reduce clam silver tissue burdens and the oxidative stress response. However, HA does not significantly affect the impact of Ag NPs on clam acetylcholinesterase activity and feeding behavior (measured as filtration rate). Overall, the integrated biological response index supports the conclusion that humic acid reduces the toxicity of Ag NPs, clearly indicating the importance of considering environmental factors when assessing potential risks posed by nanomaterials in natural settings.
Collapse
Affiliation(s)
- Tingwan Zhang
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Jin-Fen Pan
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Marine Laboratory, Duke University, Beaufort, NC, USA.
| | - Dana E Hunt
- Marine Laboratory, Duke University, Beaufort, NC, USA
| | - Min Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Ajima MNO, Pandey PK, Kumar K, Poojary N. Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to verapamil. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:44-52. [PMID: 28315791 DOI: 10.1016/j.cbpc.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022]
Abstract
Pharmaceutical drugs and their metabolites are detected in aquatic ecosystems and have been reported to cause ecotoxicological consequences to resident aquatic organisms. The study investigated the effects of acute and long-term exposure to verapamil on activities of acetylcholinesterase and antioxidant enzymes as well as mRNA expression of stress-related genes in brain and muscle tissues of Nile tilapia, Oreochromis niloticus. The 96h LC50 of verapamil to O. niloticus was 2.29mgL-1. Exposure to sub-lethal concentrations of verapamil (0.14, 0.29 and 0.57mgL-1) for period of 15, 30, 45 and 60days, led to inhibition of acetylcholinesterase activities in the brain and muscle of the fish. The activities of the oxidative enzymes such as the catalase, superoxide dismutase and glutathione peroxidase were also inhibited in both the tissues while there was an increase in the activities of glutathione-S-transferase and reduced glutathione in the muscle after 15 days at 0.29mgL-1. Lipid peroxidation and carbonyl protein showed elevated level, indicating a positive correlation with both time and concentration. The activities of energy-related biomarker (Na+-K+-ATPase) in both the tissues were significantly inhibited (p<0.05) compared with the control. Transcription of catalase (cat), superoxide dismutase (sod) and heat shock proteins 70 (hsp70) were up-regulated in both the tissues after the study period. Prolonged exposure to sub-lethal verapamil can result in oxidative stress, up-regulation of stress-related genes and neurotoxicity in O. niloticus.
Collapse
Affiliation(s)
- Malachy N O Ajima
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, Owerri, Nigeria; Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - Pramod K Pandey
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India; College of Fisheries, Central Agriculture University, Agartala, Tripura, India
| | - Kundan Kumar
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Nalini Poojary
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
18
|
Dos Santos CR, Cavalcante ALM, Hauser-Davis RA, Lopes RM, Mattos RDCODC. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:250-256. [PMID: 27054706 DOI: 10.1016/j.ecoenv.2016.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Liver and blood δ-aminolevulinic acid dehydratase (ALA-D) inhibition by exposure to sub-lethal lead concentrations over time in Nile tilapia (Oreochromis niloticus) were investigated. All three lead concentrations (1mgkg(-1), 10mgkg(-1) and 100mgkg(-1)) significantly inhibited ALA-D activity in blood (319±29.2; 180±14.6 and 172±19µmols(-1)h(-1)L(-1) respectively) and liver (302±5.84; 201±41.4 and 93±22.1µmols(-1)h(-1)L(-1)) 24h after injection relative to controls (blood: 597±37.0µmols(-1)h(-1)L(-1); liver: 376±23.1µmols(-1)h(-1)L(-1)). Blood ALA-D was greatly inhibited in all but the highest lead dose. Fish were then exposed to 1mgkg(-1) lead for 9 days, and presented short-term hyperglycemia, decreased hemoglobin and hematocrit values and time-dependent blood ALA-D activity inhibition, corroborating blood ALA-D activity as being more suitable for investigating lead effects, showing dose and time-dependent ALA-D inhibition after lead exposure. The results of the present study also demonstrated that fish size affects blood ALA-D activity, as fish from the 24-h assay, which were slightly smaller (approximately 200g), showed higher ALA-D inhibition in response to lead exposure when compared to the fish from the 9-day assay (approximately 500g). Thus, fish size should always be taken into account both in the field and in laboratory settings, and efforts should be made to obtain uniform fish size samples for biomarker studies.
Collapse
Affiliation(s)
- Carlucio Rocha Dos Santos
- Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Cidade Universitária, A. Carlos Chagas Filho, 373, Bl. D, S. 05, CEP 21941-902, Rio de Janeiro, RJ, Brasil; Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, CEP 21045-900, Rio de Janeiro, RJ, Brasil
| | - Ana Luiza Michel Cavalcante
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, CEP 21045-900, Rio de Janeiro, RJ, Brasil
| | - Rachel Ann Hauser-Davis
- Pontifícia Universidade Católica, Rua Marquês de São Vicente, 225, Gávea, CEP 22451-900, Rio de Janeiro, RJ, Brasil.
| | - Renato Matos Lopes
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, CEP 21045-900, Rio de Janeiro, RJ, Brasil
| | - Rita De Cássia Oliveira Da Costa Mattos
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, CEP 21045-900, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
19
|
Zheng Y, Qu J, Qiu L, Fan L, Meng S, Song C, Bing X, Chen J. Effect of 17α-methyltestosterone (MT) on oxidation stress in the liver of juvenile GIFT tilapia, Oreochromis niloticus. SPRINGERPLUS 2016; 5:338. [PMID: 27066359 PMCID: PMC4792819 DOI: 10.1186/s40064-016-1946-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The normal dose of 17α-methyltestosterone (MT) used in fish farming was 60 mg/L, and now the analysis of residual androgens was carried out in waste water obtained from the Beijing area, which could be detected in levels ranging from 4.1 to 7.0 ng/L. For the purpose of aquatic early warning, the present study clearly demonstrated that chronic exposure by higher concentration of MT than environmental relevant concentrations could trigger oxidative stress response to juvenile tilapia by modulating hepatic antioxidant enzyme activities and gene transcription. Some antioxidative parameters (T-GSH, GSH/GSSG and MDA) were significant decreased under 0.5 mg/L MT exposure at 7 and 14 days. Some antioxidant enzymes (SOD, CAT and GST) and transcriptional changes (sod and cat) were revealed significant decreases for MT treated groups at 7 days. Total antioxidant capacity was significant increased only in 5 mg/L MT exposure groups, but GR activities were not affected all through the whole exposure period. Almost all of the antioxidant enzymatic genes detected in the present study were showed significant increments for MT exposure both at 14 and 21 days, and the genotoxicity profile of antioxidant enzymatic genes were revealed dose-dependent manner. This study presented evidence that MT could result in oxidative stress response in the early stages of GIFT tilapia.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jianhong Qu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| |
Collapse
|
20
|
Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. CHEMOSPHERE 2016; 144:571-82. [PMID: 26398925 DOI: 10.1016/j.chemosphere.2015.09.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 05/26/2023]
Abstract
Tilapia (Oreochromis niloticus) was exposed to different sizes of zinc oxide nanoparticles (ZnO-NPs) to evaluate their organ pathologies (kidney, liver, gill, and intestine), osmoregulatory responses and immunological parameters. Sub-chronic exposure was conducted in fresh water with 1 and 10 mg/L concentrations of the small (10-30 nm) and large-size ZnO (100 nm) particles for 7 and 14 days. In this study, it is found that small and large forms of ZnO-NPs cause various pathologic findings in the target organs at all concentrations. These findings are increased of melanomacrophage aggregates, tubular deformations, necrosis and cytoplasmic vacuolations in the kidney, oedema, mononuclear cell infiltrations, fatty changes, pyknotic nuclei and hepatocellular vacuolations in the liver, hyperplasia, aneurysms, and epithelial liftings in the gills, and hyperplasia, swelled of goblet cells, villus deformations in the intestine. Results showed that respiratory burst and potential killing activity at the small-size ZnO concentration significantly increased compared to the control group (p < 0.05) but significant reductions of these parameters at the large-size ZnO concentrations compared to control (p < 0.05) were measured. These findings demonstrate the potential of each particle size to cause significant damage to the immune system. Moreover, because ZnO NPs inhibit the Na(+), K(+)-ATPase activity at all concentrations and increase serum Ca(2+) and Cl(-) levels especially in gill, these particles are osmoregulatory and toxicant for tilapia fish. As a summary, both sizes of the particles have led to organ damage, osmoregulatory changes and immune disorder in tilapia fish.
Collapse
Affiliation(s)
- Hasan Kaya
- Canakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, 17100 Çanakkale, Turkey.
| | - Fatih Aydın
- Istanbul University, Fisheries Faculty, 34470 Istanbul, Turkey
| | - Mert Gürkan
- Canakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Sevdan Yılmaz
- Canakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, 17100 Çanakkale, Turkey
| | - Mehmet Ates
- Tunceli University, Engineering Faculty, Department of Bioengineering, 62000 Tunceli, Turkey
| | - Veysel Demir
- Tunceli University, Engineering Faculty, Department of Environmental Engineering, 62000 Tunceli, Turkey
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, 39217, USA
| |
Collapse
|
21
|
Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:936-947. [PMID: 26513690 DOI: 10.1016/j.etap.2015.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Nano-size zinc oxide particles (ZnO NPs) are used in diverse industrial and commercial fields. However, the information from existing studies is not sufficient in evaluating the potential toxic effects of ZnO NPs. In this study, tilapia fish (Oreochromis niloticus) were exposed to different concentrations of small and large ZnO NPs in vivo. Accumulation in various organs/tissues (liver, gill, intestine, kidney, brain and muscle) and possible oxidative stress mechanisms were investigated comparatively. Fish were exposed to 1 and 10mg/L concentrations of small (10-30 nm) and large (100 nm) ZnO NPs semi-statically for 14 days. Both small and large ZnO NPs accumulated substantially in the tissues. Accumulation for the small ZnO NPs was significantly higher compared to larger NPs under same exposure regimes. Significant fluctuations were observed in antioxidant defense system biomarkers, including Superoxide dismutase (SOD), Catalase (CAT) and Glutathione (GSH) levels depending on particle size, exposure time and concentration. Lipid peroxidation measured with TBARS levels were higher in groups exposed to the suspensions of small ZnO NPs than that of large ZnO NPs and controls. These results imply that colloidal suspensions of small ZnO NPs induce elevated oxidative stress and toxic effects on tilapia compared to the larger NPs.
Collapse
Affiliation(s)
- Hasan Kaya
- Canakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, 17100 Çanakkale, Turkey.
| | - Fatih Aydın
- Istanbul University, Fisheries Faculty, 34470 Istanbul, Turkey
| | - Mert Gürkan
- Canakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Sevdan Yılmaz
- Canakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, 17100 Çanakkale, Turkey
| | - Mehmet Ates
- Tunceli University, Engineering Faculty, Department of Bioengineering, 62000 Tunceli, Turkey
| | - Veysel Demir
- Tunceli University, Engineering Faculty, Department of Environmental Engineering, 62000 Tunceli, Turkey
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, MS 39217, USA
| |
Collapse
|