Sehested J, Diernaes L, Møller PD, Skadhauge E. Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: effect of SCFA chain length and pH.
Comp Biochem Physiol A Mol Integr Physiol 1999;
123:359-68. [PMID:
10581701 DOI:
10.1016/s1095-6433(99)00074-4]
[Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The unidirectional transport and metabolism of 14C-labeled acetate, propionate and butyrate across the isolated bovine rumen epithelium was measured in vitro by the Ussing chamber technique. There was a significant, but relatively small, net secretion of acetate and propionate, and a large and significant net absorption of butyrate. The results demonstrate that the mucosal-serosal (MS) pathway for short-chain fatty acids (SCFA) is different from the serosal-mucosal (SM) pathway, and that butyrate is treated differently from acetate and propionate by the epithelium. The results support that the main route for epithelial SCFA transport is transcellular. The correlation between SCFA lipophility and the flux rate was positive but weak at both pH 7.3 and 6.0. Decreasing pH increased all SCFA fluxes significantly, but not proportionally to the increase of protonized SCFA in the bathing solution. There was a significant and apparently non-competitive interaction between the transport of acetate, propionate and butyrate. It seems that mediated transport mechanisms must be involved in epithelial SCFA transport in the bovine rumen, but the data do not exclude that passive diffusion could account for a significant part of the flux. The metabolism of SCFA in the Ussing chamber system was considerable, and there was a clear preference for excretion of CO2 from this metabolism to the mucosal side, while side preference for non-CO2 metabolite excretion was not studied. Of the propionate and butyrate transported in the MS direction, 78 and 95% was metabolised, while only 37 and 38% was metabolised in the SM direction (acetate metabolism could not be measured). There was, however, no simple relation between the degree of metabolism and the transport rate or the transport asymmetry of the SCFA.
Collapse