1
|
Wang Z, Zhang Q, Zhang H, Lu Y. Roles of alcohol dehydrogenase 1 in the biological activities of Candida albicans. Crit Rev Microbiol 2024:1-15. [PMID: 38916139 DOI: 10.1080/1040841x.2024.2371510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.
Collapse
Affiliation(s)
- Ziqi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Huang YW, Shu HY, Lin GH. Gene Expression of Ethanol and Acetate Metabolic Pathways in the Acinetobacter baumannii EmaSR Regulon. Microorganisms 2024; 12:331. [PMID: 38399734 PMCID: PMC10891947 DOI: 10.3390/microorganisms12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Previous studies have confirmed the involvement of EmaSR (ethanol metabolism a sensor/regulator) in the regulation of Acinetobacter baumannii ATCC 19606 ethanol and acetate metabolism. RNA-seq analysis further revealed that DJ41_568-571, DJ41_2796, DJ41_3218, and DJ41_3568 regulatory gene clusters potentially participate in ethanol and acetate metabolism under the control of EmaSR. METHODS This study fused the EmaSR regulon promoter segments with reporter genes and used fluorescence expression levels to determine whether EmaSR influences regulon expression in ethanol or acetate salt environments. The enzymatic function and kinetics of significantly regulated regulons were also studied. RESULTS The EmaSR regulons P2796 and P3218 exhibited > 2-fold increase in fluorescence expression in wild type compared to mutant strains in both ethanol and acetate environments, and PemaR demonstrated a comparable trend. Moreover, increases in DJ41_2796 concentration enhanced the conversion of acetate and succinyl-CoA into acetyl-CoA and succinate, suggesting that DJ41_2796 possesses acetate: succinyl-CoA transferase (ASCT) activity. The kcat/KM values for DJ41_2796 with potassium acetate, sodium acetate, and succinyl-CoA were 0.2131, 0.4547, and 20.4623 mM-1s-1, respectively. CONCLUSIONS In A. baumannii, EmaSR controls genes involved in ethanol and acetate metabolism, and the EmaSR regulon DJ41_2796 was found to possess ASCT activity.
Collapse
Affiliation(s)
- Yu-Weng Huang
- Department of Biomedical Sciences and Engineering, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Guang-Huey Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- International College, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
3
|
Kanno M, Shiota T, Ueno S, Takahara M, Haneda K, Tahara YO, Shintani M, Nakao R, Miyata M, Kimbara K, Futamata H, Tashiro Y. Identification of genes involved in enhanced membrane vesicle formation in Pseudomonas aeruginosa biofilms: surface sensing facilitates vesiculation. Front Microbiol 2023; 14:1252155. [PMID: 38107868 PMCID: PMC10722149 DOI: 10.3389/fmicb.2023.1252155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Membrane vesicles (MVs) are small spherical structures (20-400 nm) produced by most bacteria and have important biological functions including toxin delivery, signal transfer, biofilm formation, and immunomodulation of the host. Although MV formation is enhanced in biofilms of a wide range of bacterial species, the underlying mechanisms are not fully understood. An opportunistic pathogen, Pseudomonas aeruginosa, causes chronic infections that can be difficult to treat due to biofilm formation. Since MVs are abundant in biofilms, can transport virulence factors to the host, and have inflammation-inducing functions, the mechanisms of enhanced MV formation in biofilms needs to be elucidated to effectively treat infections. In this study, we evaluated the characteristics of MVs in P. aeruginosa PAO1 biofilms, and identified factors that contribute to enhanced MV formation. Vesiculation was significantly enhanced in the static culture; MVs were connected to filamentous substances in the biofilm, and separation between the outer and inner membranes and curvature of the membrane were observed in biofilm cells. By screening a transposon mutant library (8,023 mutants) for alterations in MV formation in biofilms, 66 mutants were identified as low-vesiculation strains (2/3 decrease relative to wild type), whereas no mutant was obtained that produced more MVs (twofold increase). Some transposons were inserted into genes related to biofilm formation, including flagellar motility (flg, fli, and mot) and extracellular polysaccharide synthesis (psl). ΔpelAΔpslA, which does not synthesize the extracellular polysaccharides Pel and Psl, showed reduced MV production in biofilms but not in planktonic conditions, suggesting that enhanced vesiculation is closely related to the synthesis of biofilm matrices in P. aeruginosa. Additionally, we found that blebbing occurred during bacterial attachment. Our findings indicate that biofilm-related factors are closely involved in enhanced MV formation in biofilms and that surface sensing facilitates vesiculation. Furthermore, this work expands the understanding of the infection strategy in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Mizuki Kanno
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Takuya Shiota
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - So Ueno
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Minato Takahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Keisuke Haneda
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masaki Shintani
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhide Kimbara
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yosuke Tashiro
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
4
|
Araya N, Leiva-Soto MA, Bruna MV, Castro-Munoz A, Behrend-Keim B, Moraga-Espinoza D, Bahamondez-Canas TF. Formulation of water-soluble Buddleja globosa Hope extracts and characterization of their antimicrobial properties against Pseudomonas aeruginosa. Front Pharmacol 2022; 13:921511. [DOI: 10.3389/fphar.2022.921511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Buddleja globosa Hope (BG) extracts are traditionally used to treat skin and gastric ulcers due to their healing properties. Non-aqueous solvents such as ethanol and DMSO are usually used to extract naturally occurring compounds. However, the cytotoxicity of these solvents and the low water solubility of the extracted compounds can hinder their biomedical applications. To overcome the limited solubility of the BG extracts, we aimed to enhance the solubility by processing a standardized hydroalcoholic extract (BG-126) through spray drying (SD), with and without two solubility enhancers. Spray-dried BG (BG-SD) extracts and spray-dried BG extracts plus polyvinylpyrrolidone (BG-SD PVP) and Soluplus® (BG-SD SP) were developed starting from BG-126 (containing 53% ethanol). These four formulations were characterized by total phenolic content, water solubility at 25°C and 37°C, and antimicrobial properties against Pseudomonas aeruginosa. All the SD formulations presented a solubility that allowed them to reach maximum concentrations of 1,024 μg/ml catechin for BG-SD and 2,048 μg/ml catechin for BG-SD PVP and BG-SD SP for antimicrobial testing. BG-SD showed the highest antimicrobial potency with a minimum inhibitory concentration (MIC) of 512 μg/ml catechin, followed by BG-126 with a MIC of 1,024 μg/ml catechin and SP. BG-126 was also shown to inhibit biofilm formation, as well as the excipients PVP and SP. The spray-dried BG (BG-SD) extract represents a promising natural active component with enhanced antimicrobial properties against P. aeruginosa for further research and the development of novel phytopharmaceuticals.
Collapse
|
5
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
6
|
He S, Zhan Z, Shi C, Wang S, Shi X. Ethanol at Subinhibitory Concentrations Enhances Biofilm Formation in Salmonella Enteritidis. Foods 2022; 11:foods11152237. [PMID: 35954005 PMCID: PMC9367854 DOI: 10.3390/foods11152237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress.
Collapse
Affiliation(s)
- Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
- Correspondence:
| |
Collapse
|
7
|
Khalifa M, Few LL, Too WCS. Phage-Choline Kinase Inhibitor Combination to Control Pseudomonas aeruginosa: A Promising Combo. Mini Rev Med Chem 2021; 22:1281-1288. [PMID: 34961459 DOI: 10.2174/1389557521666211213160256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the most prevalent opportunistic pathogens in humans that has thrived and proved to be difficult to control in this "post-antibiotic era." Antibiotic alternatives are necessary for fighting against this resilient bacterium. Even though phages might not be "the wonder drug" that solves everything, they still provide a viable option to combat P. aeruginosa and curb the threat it imposes. MAIN FINDINGS The combination of antibiotics with phages, however, poses a propitious treatment option for P. aeruginosa. Choline kinase (ChoK) is the enzyme that synthesizes phosphorylcholine subsequently incorporated into lipopolysaccharide located at the outer membrane of gram-negative bacteria. Recently, inhibition of ChoKs has been proposed as a promising antibacterial strategy. Successful docking of Hemicholinium-3, a choline kinase inhibitor, to the model structure of P. aeruginosa ChoK also supports the use of this inhibitor or its derivatives to inhibit the growth of this microorganism. CONCLUSION Therefore, the combination of the novel antimicrobial "choline kinase inhibitors (ChoKIs)" with a phage cocktail or synthetic phages as a potential treatment for P. aeruginosa infection has been proposed.
Collapse
Affiliation(s)
- Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan. Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan. Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan. Malaysia
| |
Collapse
|
8
|
Badal D, Jayarani AV, Kollaran MA, Prakash D, P M, Singh V. Foraging Signals Promote Swarming in Starving Pseudomonas aeruginosa. mBio 2021; 12:e0203321. [PMID: 34607460 PMCID: PMC8546858 DOI: 10.1128/mbio.02033-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is known for exhibiting diverse forms of collective behaviors, like swarming motility and biofilm formation. Swarming in P. aeruginosa is a collective movement of the bacterial population over a semisolid surface, but specific swarming signals are not clear. We hypothesize that specific environmental signals induce swarming in P. aeruginosa. We show that under nutrient-limiting conditions, a low concentration of ethanol provides a strong ecological motivation for swarming in P. aeruginosa strain PA14. Ethanol serves as a signal and not a source of carbon under these conditions. Moreover, ethanol-driven swarming relies on the ability of the bacteria to metabolize ethanol to acetaldehyde using a periplasmic quinoprotein alcohol dehydrogenase, ExaA. We found that ErdR, an orphan response regulator linked to ethanol oxidation, is necessary for the transcriptional regulation of a cluster of 17 genes, including exaA, during swarm lag. Further, we show that P. aeruginosa displays characteristic foraging motility on a lawn of Cryptococcus neoformans, a yeast species, in a manner dependent on the ethanol dehydrogenase ErdR and on rhamnolipids. Finally, we show that ethanol, as a volatile, could induce swarming in P. aeruginosa at a distance, suggesting long-range spatial effects of ethanol as a signaling molecule. IMPORTANCE P. aeruginosa, a Gram-negative opportunistic pathogen, can adapt to diverse ecological niches and exhibits several forms of social behavior. Swarming (flagellum-driven collective motility) is a collective behavior of P. aeruginosa exclusively over semisolid surfaces. However, the ecological motivations for swarming are not known. Here, we demonstrate the importance of a specific environmental cue, ethanol, produced by many microbes, in inducing swarming in the P. aeruginosa population during starvation. We show that ethanol is a signal for swarming in P. aeruginosa. Our study provides a framework to understand swarming as a chemotactic response of bacterium to a food source via a foraging signal, ethanol.
Collapse
Affiliation(s)
- Divakar Badal
- Biosystems Science & Engineering, Indian Institute of Science, Bangalore, India
| | - Abhijith Vimal Jayarani
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Mohammad Ameen Kollaran
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deep Prakash
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Monisha P
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Varsha Singh
- Biosystems Science & Engineering, Indian Institute of Science, Bangalore, India
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Curry Leaf Triggers Cell Death of P. gingivalis with Membrane Blebbing. Pathogens 2021; 10:pathogens10101286. [PMID: 34684236 PMCID: PMC8538566 DOI: 10.3390/pathogens10101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Periodontal disease has become a serious public health problem, as indicated by accumulating evidence that periodontal disease is not only a major cause of tooth loss but is also associated with various systemic diseases. The present study assessed the anti-bacterial activities of three herbal products (curry leaf, clove, and cinnamon) against Porphyomonas gingivalis, a keystone pathogen for periodontal diseases. The curry leaf extract (CLE) showed the strongest growth inhibitory activity among them, and the activity was maintained even after extensive heat treatment. Of note, while clove and cinnamon extracts at sub-minimum inhibitory concentrations (sub-MICs) significantly enhanced the biofilm formation of P. gingivalis, CLE at sub-MIC did not have any effect on the biofilm formation. The MIC of CLE against P. gingivalis was higher than those against a wide range of other oral bacterial species. P. gingivalis cells were completely killed within 30 min after treatment with CLE. Spatiotemporal analysis using high-speed atomic force microscopy revealed that CLE immediately triggered aberrant membrane vesicle formation on the bacterial surface. Bacterial membrane potential assay revealed that CLE induced depolarization of the bacterial membrane. Taken together, these findings suggest the mechanism behind early bactericidal activity of CLE and its therapeutic applicability in patients with periodontal diseases.
Collapse
|
10
|
Ramos MSM, Paniguel PL, Sadatsune T, Graziano KU, Mondelli AL, Bocchi SCM. Decontamination of stainless-steel bowls with 80% (w/v) alcohol for 30 s and 60 s: randomized experimental study. Rev Lat Am Enfermagem 2021; 29:e3475. [PMID: 34495188 PMCID: PMC8432581 DOI: 10.1590/1518-8345.4997.3475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/14/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: to compare the efficacy of 80% (w/v) alcohol, rubbed for 30 and 60 seconds,
in the manual processing of stainless-steel wash bowls, after cleaning with
running water and neutral detergent. Method: experimental study conducted in a hospital in the state of São Paulo, Brazil,
on 50 bowls randomly divided into two groups of 25 bowls each for
interventions of 30 and 60 seconds of rubbing with 80% (w/v) alcohol. Results: based on the microbiological analyses collected, before and after the
interventions for both groups, partial efficacy of the disinfectant was
observed even when extending rubbing time. In both groups, there was a
higher prevalence of survival of Pseudomonas aeruginosa,
with 14 strains that were resistant to carbapenems, being, specifically, 11
to imipenem and three to meropenem. Conclusion: stainless-steel bed wash bowls decontaminated for reuse by 80% (w/v) alcohol,
after cleaning with running water and neutral detergent, showed to be
reservoirs of hospital pathogens. The use of bed wash bowls for patients
with intact skin would not have worrying consequences, but considering those
with non-intact skin and the contamination of professionals’ hands, the
results in this study justify the search for other decontamination methods
or the adoption of disposable bed baths.
Collapse
Affiliation(s)
| | - Patricia Leme Paniguel
- Secretaria Estadual de Saúde do Estado de São Paulo, Hospital das Clínicas, Botucatu, SP, Brazil
| | - Terue Sadatsune
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, SP, Brazil
| | | | - Alessandro Lia Mondelli
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Medicina, Botucatu, Botucatu, SP, Brazil
| | | |
Collapse
|
11
|
Wang T, Wu L, Wang Y, Song J, Zhang F, Zhu X. Hexyl-aminolevulinate ethosome-mediated photodynamic therapy against acne: in vitro and in vivo analyses. Drug Deliv Transl Res 2021; 12:325-332. [PMID: 33730323 DOI: 10.1007/s13346-021-00942-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Biofilm formation by Propionibacterium acnes is known to cause failure of anti-acne treatment. Conventional therapies for acne are typically inadequate. Accordingly, in this study, we evaluated the therapeutic potential of photodynamic therapy (PDT) using hexyl-aminolevulinate (HAL)-loaded ethosomes (ESs) against the biofilms of P. acnes in vitro and P. acnes-induced inflammatory acne model in vivo. The antibacterial effects of HAL ESs were evaluated using XTT colorimetric assays and scanning electron microscopic observations of morphological changes. P. acnes was intradermally injected into the ears of Sprague-Dawley rats, and the anti-inflammatory effects of HAL ESs were measured by determining changes in appearance, histology, and the antibacterial effects by P. acnes abundance in ear tissues compared with blank control ESs, HAL alone, and 5-aminolevulinic acid (ALA) alone. The highest reduction in viability in P. acnes biofilms was observed after treatment with 5 mg/mL HAL ESs. Notably, blank control ESs also showed significant inhibitory effects. Furthermore, HAL ESs had superior therapeutic effects in the rat model compared with HAL or ALA solutions. The observed therapeutic effects of HAL ESs against P. acnes biofilms and P. acnes-induced inflammation suggest that PDT with HAL-loaded ESs may have potential applications in the treatment of acne.
Collapse
Affiliation(s)
- Tai Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Lifang Wu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Yingzhe Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Jinru Song
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Feiyin Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Xiaoliang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China.
| |
Collapse
|
12
|
Phuengmaung P, Somparn P, Panpetch W, Singkham-In U, Wannigama DL, Chatsuwan T, Leelahavanichkul A. Coexistence of Pseudomonas aeruginosa With Candida albicans Enhances Biofilm Thickness Through Alginate-Related Extracellular Matrix but Is Attenuated by N-acetyl-l-cysteine. Front Cell Infect Microbiol 2020; 10:594336. [PMID: 33330136 PMCID: PMC7732535 DOI: 10.3389/fcimb.2020.594336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023] Open
Abstract
Bacteria and Candidaalbicans are prominent gut microbiota, and the translocation of these organisms into blood circulation might induce mixed-organism biofilms, which warrants the exploration of mixed- versus single-organism biofilms in vitro and in vivo. In single-organism biofilms, Acinetobacter baumannii and Pseudomonas aeruginosa (PA) produced the least and the most prominent biofilms, respectively. C. albicans with P. aeruginosa (PA+CA) induced the highest biofilms among mixed-organism groups as determined by crystal violet straining. The sessile form of PA+CA induced higher macrophage responses than sessile PA, which supports enhanced immune activation toward mixed-organism biofilms. In addition, Candida incubated in pre-formed Pseudomonas biofilms (PA>CA) produced even higher biofilms than PA+CA (simultaneous incubation of both organisms) as determined by fluorescent staining on biofilm matrix (AF647 color). Despite the initially lower bacteria during preparation, bacterial burdens by culture in mixed-organism biofilms (PA+CA and PA>CA) were not different from biofilms of PA alone, supporting Candida-enhanced Pseudomonas growth. Moreover, proteomic analysis in PA>CA biofilms demonstrated high AlgU and mucA with low mucB when compared with PA alone or PA+CA, implying an alginate-related mucoid phenotype in PA>CA biofilms. Furthermore, mice with PA>CA biofilms demonstrated higher bacteremia with more severe sepsis compared with mice with PA+CA biofilms. This is possibly due to the different structures. Interestingly, l-cysteine, a biofilm matrix inhibitor, attenuated mixed-organism biofilms both in vitro and in mice. In conclusion, Candida enhanced Pseudomonas alginate–related biofilm production, and Candida presentation in pre-formed Pseudomonas biofilms might alter biofilm structures that affect clinical manifestations but was attenuated by l-cysteine.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Alcohol dehydrogenase modulates quorum sensing in biofilm formations of Acinetobacter baumannii. Microb Pathog 2020; 148:104451. [PMID: 32805359 DOI: 10.1016/j.micpath.2020.104451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a common opportunistic nosocomial pathogen, which is able to produce biofilms on the surface of indwelling medical devices, and consequentially causes severe infections in clinical settings. In order to identify genes that involved in the biofilm formation of A. baumannii, the differential expression of genes between biofilms and planktonic cells was analyzed by RNAseq assay and validated in clinical isolates. The RNAseq data showed that 264 genes were up-regulated, while 240 genes were down-regulated in the biofilms of A. baumannii. Among them, the gene encoding alcohol dehydrogenase (ADH), a known molecule of bacterial quorum sensing (QS) system that plays a key role in biofilm formation bacteria, was one of the most up-regulated gene in both reference strains and clinical isolates. Functional studies using ADH inhibitor disulfiram and activator taurine further demonstrated that the presence of disulfiram significantly inhibit the cell growth, motility and biofilm formation, paralleled by a decreased expression of QS-related genes, including AbaI, A1S_0109, and A1S_0112, in a dose-dependent manner; vice versa, the addition of ADH activator taurine, and QS molecule C12- homoserine lactone synthase (HSL) led a dose-dependent increase of bacterial growth, motility and biofilm production, along with an increased expression of QS-related genes in both reference strains and clinical isolates of A. baumannii. These results suggested that the ADH was a key molecule able to modulate the QS system and promote the biofilm formation, growth and motility in A. baumannii.
Collapse
|
14
|
Sampedro I, Pérez-Mendoza D, Toral L, Palacios E, Arriagada C, Llamas I. Effects of Halophyte Root Exudates and Their Components on Chemotaxis, Biofilm Formation and Colonization of the Halophilic Bacterium Halomonas Anticariensis FP35 T. Microorganisms 2020; 8:E575. [PMID: 32316222 PMCID: PMC7232322 DOI: 10.3390/microorganisms8040575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Increase in soil salinity poses an enormous problem for agriculture and highlights the need for sustainable crop production solutions. Plant growth-promoting bacteria can be used to boost the growth of halophytes in saline soils. Salicornia is considered to be a promising salt-accumulating halophyte for capturing large amounts of carbon from the atmosphere. In addition, colonization and chemotaxis could play an important role in Salicornia-microbe interactions. In this study, the role of chemotaxis in the colonization of the halophilic siredophore-producing bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants was investigated. The chemotactic response of FP35T to Salicornia root exudates showed optimum dependence at a salt concentration of 5 % NaCl (w/v). Oleanolic acid, the predominant compound in the exudates detected by HPLC and identified by UPLC-HRMS Q-TOF, acts as a chemoattractant. In vitro experiments demonstrated the enhanced positive effects of wild-type H. anticariensis strain FP35T on root length, shoot length, germination and the vigour index of S. hispanica. Furthermore, these positive effects partially depend on an active chemotaxis system, as the chemotaxis mutant H. anticariensis FP35 ΔcheA showed reduced plant growth promotion for all the parameters tested. Overall, our results suggest that chemotaxis responses to root exudates play an important role in interactions between Salicornia and halophilic bacteria, enhance their colonization and boost plant growth promotion. Preliminary results also indicate that root exudates have a positive impact on H. anticariensis FP35T biofilm formation under saline conditions, an effect which totally depends on the presence of the cheA gene.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, 18016 Armilla, Granada, Spain;
| | - Esther Palacios
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - César Arriagada
- Department of Forestry Science, Bioremediation Laboratory, Faculty of Agricultural and Forestry Science, University of La Frontera, 01145 Temuco, Chile;
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| |
Collapse
|
15
|
Ethanol Decreases Pseudomonas aeruginosa Flagellar Motility through the Regulation of Flagellar Stators. J Bacteriol 2019; 201:JB.00285-19. [PMID: 31109994 DOI: 10.1128/jb.00285-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa frequently encounters microbes that produce ethanol. Low concentrations of ethanol reduced P. aeruginosa swim zone area by up to 45% in soft agar. The reduction of swimming by ethanol required the flagellar motor proteins MotAB and two PilZ domain proteins (FlgZ and PilZ). PilY1 and the type 4 pilus alignment complex (comprising PilMNOP) were previously implicated in MotAB regulation in surface-associated cells and were required for ethanol-dependent motility repression. As FlgZ requires the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) to represses motility, we screened mutants lacking genes involved in c-di-GMP metabolism and found that mutants lacking diguanylate cyclases SadC and GcbA were less responsive to ethanol. The double mutant was resistant to its effects. As published previously, ethanol also represses swarming motility, and the same genes required for ethanol effects on swimming motility were required for its regulation of swarming. Microscopic analysis of single cells in soft agar revealed that ethanol effects on swim zone area correlated with ethanol effects on the portion of cells that paused or stopped during the time interval analyzed. Ethanol increased c-di-GMP in planktonic wild-type cells but not in ΔmotAB or ΔsadC ΔgcbA mutants, suggesting c-di-GMP plays a role in the response to ethanol in planktonic cells. We propose that ethanol produced by other microbes induces a regulated decrease in P. aeruginosa motility, thereby promoting P. aeruginosa colocalization with ethanol-producing microbes. Furthermore, some of the same factors involved in the response to surface contact are involved in the response to ethanol.IMPORTANCE Ethanol is an important biologically active molecule produced by many bacteria and fungi. It has also been identified as a potential marker for disease state in cystic fibrosis. In line with previous data showing that ethanol promotes biofilm formation by Pseudomonas aeruginosa, here we report that ethanol reduces swimming motility using some of the same proteins involved in surface sensing. We propose that these data may provide insight into how microbes, via their metabolic byproducts, can influence P. aeruginosa colocalization in the context of infection and in other polymicrobial settings.
Collapse
|
16
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
17
|
Stadlbauer V, Horvath A, Komarova I, Schmerboeck B, Feldbacher N, Wurm S, Klymiuk I, Durdevic M, Rainer F, Blesl A, Stryeck S, Madl T, Stiegler P, Leber B. A single alcohol binge impacts on neutrophil function without changes in gut barrier function and gut microbiome composition in healthy volunteers. PLoS One 2019; 14:e0211703. [PMID: 30707717 PMCID: PMC6358085 DOI: 10.1371/journal.pone.0211703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alcohol binge drinking is a dangerous drinking habit, associated with neurological problems and inflammation. The impact of a single alcohol binge on innate immunity, gut barrier and gut microbiome was studied. In this cohort study 15 healthy volunteers received 2 ml vodka 40% v/v ethanol/kg body weight. Neutrophil function was studied by flow cytometry; markers of gut permeability and inflammation (lactulose/mannitol/sucrose test, zonulin, calprotectin, diamino-oxidase) were studied with NMR spectroscopy and enzyme-linked immunosorbent assay in urine, stool and serum respectively. Bacterial products in serum were quantified using different reporter cell lines. Gut microbiome composition was studied by 16S rDNA sequencing and bioinformatics analysis. After a single alcohol binge, neutrophils were transiently primed and the response to E.coli stimulation with reactive oxygen species (ROS) production was transiently increased, on the other hand the percentage of neutrophils that did not perform phagocytosis increased. No changes in gut permeability, inflammatory biomarker, bacterial translocation and microbiome composition could be detected up to 4 hours after a single alcohol binge or on the next day. A single alcohol binge in young, healthy volunteers transiently impacts on neutrophil function. Although the exact biological consequence of this finding is not clear yet, we believe that this strengthens the importance to avoid any alcohol binge drinking, even in young, otherwise healthy persons.
Collapse
Affiliation(s)
- Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Irina Komarova
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Bianca Schmerboeck
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Nicole Feldbacher
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sonja Wurm
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Ingeborg Klymiuk
- Center for Medical Research, Core Facility Molecular Biology, Medical University of Graz, Graz, Austria
| | - Marija Durdevic
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Florian Rainer
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Andreas Blesl
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Philipp Stiegler
- Department of Transplantation Surgery, Medical University of Graz, Graz, Austria
| | - Bettina Leber
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Department of Transplantation Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Bordeleau E, Mazinani SA, Nguyen D, Betancourt F, Yan H. Abrasive treatment of microtiter plates improves the reproducibility of bacterial biofilm assays. RSC Adv 2018; 8:32434-32439. [PMID: 35547717 PMCID: PMC9086168 DOI: 10.1039/c8ra06352d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022] Open
Abstract
Microtiter plate-based bacterial biofilm assay is frequently used to study bacterial biofilm development and growth. While this assay is simple and relatively high-throughput, it frequently shows difficulty in establishing robust biofilm attachment in the wells. We report that the consistency of bacterial biofilm assays carried out in microtiter plates subjected to abrasive treatment, by sandblasting or drill press grinding, is significantly improved in a Pseudomonas fluorescens Pf0-1 model. Scanning electron microscopy imaging suggests that the treated surfaces could provide points of attachment to facilitate the recruitment of bacteria in the initial phase of biofilm colony establishment. The sandblast treated polypropylene, but not polystyrene, plates were found suitable in studying the impact of flavonoid quercetin on the biofilm formation in Bacillus subtilis FB17. Further investigation revealed that due to the hydrophobicity of the polystyrene surfaces, a greater amount of quercetin was adsorbed on the plate surface, effectively lowering the concentration of the flavonoid in solution. The reproducibility of bacterial biofilm assays is improved using abrasively-treated microtiter plates.![]()
Collapse
Affiliation(s)
- Emily Bordeleau
- Department of Chemistry and Centre for Biotechnology, Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario Canada L2S 3A1
| | - Sina Atrin Mazinani
- Department of Chemistry and Centre for Biotechnology, Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario Canada L2S 3A1
| | - David Nguyen
- Department of Chemistry and Centre for Biotechnology, Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario Canada L2S 3A1
| | - Frank Betancourt
- Department of Chemistry and Centre for Biotechnology, Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario Canada L2S 3A1
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario Canada L2S 3A1
| |
Collapse
|
19
|
Sritharadol R, Hamada M, Kimura S, Ishii Y, Srichana T, Tateda K. Mupirocin at Subinhibitory Concentrations Induces Biofilm Formation in Staphylococcus aureus. Microb Drug Resist 2018; 24:1249-1258. [PMID: 29653478 DOI: 10.1089/mdr.2017.0290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Mupirocin is a useful antibiotic against superficial skin infections. We compared the impact of mupirocin with a cephalosporin, a fluoroquinolone, an aminoglycoside, and a macrolide on planktonic cell growth and biofilm formation of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). MATERIALS AND METHODS Minimum inhibitory concentration (MIC) of mupirocin was determined against S. aureus strains used in this study. Biofilm formation of S. aureus strains exposed to mupirocin was quantified by crystal violet staining assay. Moreover, biofilm structure and viability of the biofilm cells were visualized by Live/Dead staining assay. Biofilm-related gene expression was investigated by quantitative real-time PCR. RESULTS MRSA USA300 clone was resistant to mupirocin with MIC of 1,024 mg/L, while MRSA ATCC-43300 and MSSA ATCC-29213 were susceptible with MICs of 0.03 mg/L. Planktonic cell growth of the S. aureus strains was inhibited by mupirocin in a dose-dependent manner. However, some of the low concentrations of mupirocin less than the MICs promoted biofilm formation. Confocal laser scanning microscopy of the biofilm structures and cell viabilities showed established biofilms of slightly higher cell density in the mupirocin treated groups, especially in the MRSA USA300 clone. Gene expression of RNAIII in planktonic cells and biofilms of MRSA USA300 clone showed the highest upregulation after initial exposure to sub-MIC of mupirocin followed by downregulation, whereas the other antibiotics showed various fluctuations. CONCLUSION The results showed that subinhibitory concentrations of mupirocin promoted biofilm formation of S. aureus, in particular the MRSA USA300 clone.
Collapse
Affiliation(s)
- Rutthapol Sritharadol
- 1 Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University , Hat Yai, Songkhla, Thailand .,2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine , Tokyo, Japan
| | - Masakaze Hamada
- 2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine , Tokyo, Japan
| | - Soichiro Kimura
- 2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine , Tokyo, Japan
| | - Yoshikazu Ishii
- 2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine , Tokyo, Japan
| | - Teerapol Srichana
- 1 Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University , Hat Yai, Songkhla, Thailand
| | - Kazuhiro Tateda
- 2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine , Tokyo, Japan
| |
Collapse
|
20
|
KÖSE H, YAPAR N. The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turk J Med Sci 2017; 47:1287-1294. [DOI: 10.3906/sag-1605-88] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
21
|
Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4034517. [PMID: 27868063 PMCID: PMC5102705 DOI: 10.1155/2016/4034517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Sublethal concentrations (sub-MICs) of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+) that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.
Collapse
|
22
|
Yanagida K, Sakuda A, Suzuki-Minakuchi C, Shintani M, Matsui K, Okada K, Nojiri H. Comparisons of the transferability of plasmids pCAR1, pB10, R388, and NAH7 among Pseudomonas putida at different cell densities. Biosci Biotechnol Biochem 2016; 80:1020-3. [DOI: 10.1080/09168451.2015.1127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
The transferability of plasmids pCAR1, pB10, R388, and NAH7 was compared using the same donor-recipient system at different cell density combinations in liquid or on a solid surface. pCAR1 was efficiently transferred in liquid, whereas the other plasmids were preferentially transferred on a solid surface. Difference of liquid or solid affected the transfer frequency especially at lower cell densities.
Collapse
Affiliation(s)
- Kosuke Yanagida
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Ayako Sakuda
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | | | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University , Hamamatsu, Japan
| | - Kazuhiro Matsui
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
23
|
Krämer A, Herzer J, Overhage J, Meyer-Almes FJ. Substrate specificity and function of acetylpolyamine amidohydrolases from Pseudomonas aeruginosa. BMC BIOCHEMISTRY 2016; 17:4. [PMID: 26956223 PMCID: PMC4784309 DOI: 10.1186/s12858-016-0063-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022]
Abstract
Background Pseudomonas aeruginosa, a Gram-negative, aerobic coccobacillus bacterium is an opportunistic human pathogen and worldwide the fourth most common cause of hospital-acquired infections which are often high mortality such as ventilator-associated pneumoniae. The polyamine metabolism of P. aeruginosa and particularly the deacetylation of acetylpolyamines has been little studied up to now. Results with other bacterial pathogens e.g., Y. pestis suggest that polyamines may be involved in the formation of biofilms or confer resistance against certain antibiotics. Results To elucidate the role of acetylpolyamines and their enzymatic deacetylation in more detail, all three putative acetylpolyamine amidohydrolases (APAHs) from P. aeruginosa have been expressed in enzymatic active form. The APAHs PA0321 and PA1409 are shown to be true polyamine deacetylases, whereas PA3774 is not able to deacetylate acetylated polyamines. Every APAH can hydrolyze trifluoroacetylated lysine-derivatives, but only PA1409 and much more efficiently PA3774 can also process the plain acetylated lysine substrate. P. aeruginosa is able to utilize acetylcadaverine and acetylputrescine as a carbon source under glucose starvation. If either the PA0321 or the PA1409 but not the PA3774 gene is disrupted, the growth of P. aeruginosa is reduced and delayed. In addition, we were able to show that the APAH inhibitors SAHA and SATFMK induce biofilm formation in both PA14 and PAO1 wildtype strains. Conclusions P. aeruginosa has two functional APAHs, PA0321 and PA1409 which enable the utilization of acetylpolyamines for the metabolism of P. aeruginosa. In contrast, the physiological role of the predicted APAH, PA3774, remains to be elucidated. Its ability to deacetylate synthetic acetylated lysine substrates points to a protein deacetylation functionality with yet unknown substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12858-016-0063-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Krämer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany
| | - Jan Herzer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Joerg Overhage
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany.
| |
Collapse
|
24
|
Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Appl Environ Microbiol 2015; 81:2808-18. [PMID: 25681177 DOI: 10.1128/aem.04220-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa.
Collapse
|
25
|
Sethupathy S, Nithya C, Pandian SK. 2-Furaldehyde diethyl acetal from tender coconut water (Cocos nucifera) attenuates biofilm formation and quorum sensing-mediated virulence of Chromobacterium violaceum and Pseudomonas aeruginosa. BIOFOULING 2015; 31:721-733. [PMID: 26571230 DOI: 10.1080/08927014.2015.1102897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the anti-biofilm and quorum sensing inhibitory (QSI) potential of tender coconut water (TCW) against Chromobacterium violaceum and Pseudomonas aeruginosa. TCW significantly inhibited the QS regulated violacein, virulence factors and biofilm production without affecting their growth. qRT-PCR analysis revealed the down-regulation of autoinducer synthase, transcriptional regulator and virulence genes. Mass-spectrometric analysis of a petroleum ether extract of the TCW hydrolyte revealed that 2-furaldehyde diethyl acetal (2FDA) and palmitic acid (PA) are the major compounds. In vitro bioassays confirmed the ability of 2FDA to inhibit the biofilm formation and virulence factors. In addition, the combination of PA with 2FDA resulted in potent inhibition of biofilm formation and virulence factors. The results obtained strongly suggest that TCW can be exploited as a base for designing a novel antipathogenic drug formulation to treat biofilm mediated infections caused by P. aeruginosa.
Collapse
Affiliation(s)
| | - Chari Nithya
- a Department of Biotechnology , Alagappa University , Karaikudi , India
| | | |
Collapse
|