1
|
Rudzka A, Zdun B, Antos N, Montero LM, Reiter T, Kroutil W, Borowiecki P. Biocatalytic characterization of an alcohol dehydrogenase variant deduced from Lactobacillus kefir in asymmetric hydrogen transfer. Commun Chem 2023; 6:217. [PMID: 37828252 PMCID: PMC10570314 DOI: 10.1038/s42004-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hydrogen transfer biocatalysts to prepare optically pure alcohols are in need, especially when it comes to sterically demanding ketones, whereof the bioreduced products are either essential precursors of pharmaceutically relevant compounds or constitute APIs themselves. In this study, we report on the biocatalytic potential of an anti-Prelog (R)-specific Lactobacillus kefir ADH variant (Lk-ADH-E145F-F147L-Y190C, named Lk-ADH Prince) employed as E. coli/ADH whole-cell biocatalyst and its characterization for stereoselective reduction of prochiral carbonyl substrates. Key enzymatic reaction parameters, including the reaction medium, evaluation of cofactor-dependency, organic co-solvent tolerance, and substrate loading, were determined employing the drug pentoxifylline as a model prochiral ketone. Furthermore, to tap the substrate scope of Lk-ADH Prince in hydrogen transfer reactions, a broad range of 34 carbonylic derivatives was screened. Our data demonstrate that E. coli/Lk-ADH Prince exhibits activity toward a variety of structurally different ketones, furnishing optically active alcohol products at the high conversion of 65-99.9% and in moderate-to-high isolated yields (38-91%) with excellent anti-Prelog (R)-stereoselectivity (up to >99% ee) at substrate concentrations up to 100 mM.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Beata Zdun
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Natalia Antos
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Lia Martínez Montero
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
| |
Collapse
|
2
|
Characterization of Two Dehydrogenases from Gluconobacter oxydans Involved in the Transformation of Patulin to Ascladiol. Toxins (Basel) 2022; 14:toxins14070423. [PMID: 35878161 PMCID: PMC9323132 DOI: 10.3390/toxins14070423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.
Collapse
|
3
|
The 5-Ketofructose Reductase of Gluconobacter sp. Strain CHM43 Is a Novel Class in the Shikimate Dehydrogenase Family. J Bacteriol 2021; 203:e0055820. [PMID: 34309403 DOI: 10.1128/jb.00558-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconobacter sp. strain CHM43 oxidizes mannitol to fructose and then oxidizes fructose to 5-keto-d-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here, we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP+-dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP+-dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the Km value for 5KF but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the Km value for 5KF, suggesting a catalytic mechanism similar to that of SDH. With these data taken together, we suggest that KFR is a new member of the SDH family. IMPORTANCE A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose, a potential low-calorie sweetener, at a high yield. Here, we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation, and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small subgroup of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved, and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.
Collapse
|
4
|
Wang T, Yang K, Tian Q, Han R, Zhang X, Li A, Zhang L. Acetoacetyl-CoA reductase PhaB as an excellent anti-Prelog biocatalyst for the synthesis of chiral β-hydroxyl ester and the molecular basis of its catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
6
|
Ranjan P, Pandey A, Binod P. Resolution of enantiopure (S)-1-(1-napthyl) ethanol from racemic mixture by a novel Bacillus cereus isolate. J Basic Microbiol 2017; 57:762-769. [PMID: 28671310 DOI: 10.1002/jobm.201700207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 11/11/2022]
Abstract
Chiral intermediates have wide application and high demand in pharmaceutical, agricultural, and other biotechnological industries for the preparation of bulk drug substances or fine chemicals. (S)-1-(1-napthyl) ethanol is an important synthetic intermediate of mevinic acid analog and a potential inhibitor of 3-hydroxy methyl glutaryl coenzyme A reductase enzymes which is rate limiting for cholesterol synthesis. The present study focuses on the resolution of (RS)-1-(1-napthyl) ethanol using whole cell biotransformation approach. The screening of microbial strains for the specific conversion were performed by the enrichment techniques using (RS)-1-(1-napthyl) ethanol. Evaluation of resolution, i.e., the enantioselective conversion of (R)-1-(1-napthyl) ethanol into 1-acetonapthone and production of (S)-1-(1-napthyl) ethanol with high purity were carried out. Among the isolates, a novel strain Bacillus cereus WG3 was found to be potent for the resolution and conversion of (S)-1-(1-napthyl) ethanol. This strain showed 86% conversion of (R)-1-(1-napthyl) ethanol and 95% yield of S-1-(1-napthyl) ethanol with 80% ee after 24 h. Further, the optimization of biotransformation reactions was carried out and the optimal parameters were found to be pH 7.0 and temperature 30 °C.
Collapse
Affiliation(s)
- Preeti Ranjan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India.,Center of Innovative & Applied Bioprocessing, Mohali, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Cloning and characterization of three ketoreductases from soil metagenome for preparing optically active alcohols. Biotechnol Lett 2016; 38:1799-808. [DOI: 10.1007/s10529-016-2167-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
8
|
Yang JW, Zheng DJ, Cui BD, Yang M, Chen YZ. RNA-seq transcriptome analysis of a Pseudomonas strain with diversified catalytic properties growth under different culture medium. Microbiologyopen 2016; 5:626-36. [PMID: 27061463 PMCID: PMC4985596 DOI: 10.1002/mbo3.357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 11/11/2022] Open
Abstract
Biocatalysis is an emerging strategy for the production of enantio-pure organic molecules. However, lacking of commercially available enzymes restricts the widespread application of biocatalysis. In this study, we report a Pseudomonas strain which exhibited versatile oxidation activity to synthesize chiral sulfoxides when growing under M9-toluene medium and reduction activity to synthesize chiral alcohols when on Luria-Bertani (LB) medium, respectively. Further comparative transcriptome analysis on samples from these two cultural conditions has identified 1038 differentially expressed genes (DEG). Gene Ontology (GO) enrichment and KEGG pathways analysis demonstrate significant changes in protein synthesis, energy metabolism, and biosynthesis of metabolites when cells cultured under different conditions. We have identified eight candidate enzymes from this bacterial which may have the potential to be used for synthesis of chiral alcohol and sulfoxide chemicals. This work provides insights into the mechanism of diversity in catalytic properties of this Pseudomonas strain growth with different cultural conditions, as well as candidate enzymes for further biocatalysis of enantiomerically pure molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563003, China
| | - Dai-Jun Zheng
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Bao-Dong Cui
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563003, China
| | - Min Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
9
|
Chen R, Deng J, Lin J, Yin X, Xie T, Yang S, Wei D. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Biotechnol Appl Biochem 2015; 63:465-70. [DOI: 10.1002/bab.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Chen
- State Key Laboratory of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai People's Republic of China
- Center for Biomedicine and Health; Division of Basical Medicine; Hangzhou Normal University; Hangzhou People's Republic of China
| | - Jian Deng
- State Key Laboratory of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai People's Republic of China
| | - Xiaopu Yin
- Center for Biomedicine and Health; Division of Basical Medicine; Hangzhou Normal University; Hangzhou People's Republic of China
| | - Tian Xie
- Center for Biomedicine and Health; Division of Basical Medicine; Hangzhou Normal University; Hangzhou People's Republic of China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai People's Republic of China
| |
Collapse
|
10
|
Yin B, Deng J, Lim L, Yuan YA, Wei D. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans. Biosci Biotechnol Biochem 2015; 79:410-21. [PMID: 25561169 DOI: 10.1080/09168451.2014.993355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report the crystal structure of old yellow enzyme (OYE) family protein Gox0502 (a.a 1-315) in free form at 3.3 Å. Detailed structural analysis revealed the key residues involved in stereospecific determination of Gox0502, such as Trp66 and Trp100. Structure-based computational analysis suggested the bulky side chains of these tryptophan residues may play important roles in product stereoselectivity. The introduction of Ile or Phe or Tyr mutation significantly reduced the product diastereoselectivity. We hypothesized that less bulky side chains at these critical residues could create additional free space to accommodate intermediates with different conformations. Notably, the introduction of Phe mutation at residue Trp100 increased catalytic activity compared to wild-type Gox0502 toward a set of substrates tested, which suggests that a less bulky Phe side chain at residue W100F may facilitate product release. Therefore, Gox0502 structure could provide useful information to generate desirable OYEs suitable for biotechnological applications in industry.
Collapse
Affiliation(s)
- Bo Yin
- a State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology , East China University of Science and Technology , Shanghai , China
| | | | | | | | | |
Collapse
|
11
|
Chen R, Liu X, Wang J, Lin J, Wei D. Cloning, expression, and characterization of an anti-Prelog stereospecific carbonyl reductase from Gluconobacter oxydans DSM2343. Enzyme Microb Technol 2014; 70:18-27. [PMID: 25659628 DOI: 10.1016/j.enzmictec.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
A new anti-Prelog stereospecific carbonyl reductase (GoKR) from Gluconobacter oxydans DSM2343 was cloned and identified in Escherichia coli. This GoKR formed a homo-tetramer with a subunit size of approximately 27.0kDa. GoKR exhibited full activity with NADPH but not with NADH as a cofactor. The optimal pH and temperature were 9.0 and 30°C, respectively. GoKR reduced various ketones, including aliphatic and aromatic ketones, α- and β-keto esters. Aromatic ketones were reduced to (R)-enantiomers, whereas keto esters were reduced to (S)-hydroxy esters with different enantioselectivities. The data indicate that GoKR does not obey Prelog's rule and exhibits anti-Prelog enantiopreference. Enzyme-substrate-cofactor docking analysis showed that hydride transfer occurred at the si faces of carbonyl group for ethyl 4-chloro-3-oxobutanoate (COBE), which was then selectively reduced to the chiral (S)-alcohol. Excellent enantioselectivities were obtained for reducing COBE and ethyl 2-oxo-4-phenylbutyrate into the corresponding (S)-type products. These products are important for synthesizing HMG-CoA reductase (statins) and angiotensin-converting enzyme inhibitors, respectively.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Center for Biomedicine and Health, Division of Basical Medicine, Hangzhou Normal University, Hangzhou 310012, China
| | - Xu Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiale Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|