1
|
Gut Microbiome Proteomics in Food Allergies. Int J Mol Sci 2023; 24:ijms24032234. [PMID: 36768555 PMCID: PMC9917015 DOI: 10.3390/ijms24032234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Food allergies (FA) have dramatically increased in recent years, particularly in developed countries. It is currently well-established that food tolerance requires the strict maintenance of a specific microbial consortium in the gastrointestinal (GI) tract microbiome as alterations in the gut microbiota can lead to dysbiosis, causing inflammation and pathogenic intestinal conditions that result in the development of FA. Although there is currently not enough knowledge to fully understand how the interactions between gut microbiota, host responses and the environment cause food allergies, recent advances in '-omics' technologies (i.e., proteomics, genomics, metabolomics) and in approaches involving systems biology suggest future headways that would finally allow the scientific understanding of the relationship between gut microbiome and FA. This review summarizes the current knowledge in the field of FA and insights into the future advances that will be achieved by applying proteomic techniques to study the GI tract microbiome in the field of FA and their medical treatment. Metaproteomics, a proteomics experimental approach of great interest in the study of GI tract microbiota, aims to analyze and identify all the proteins in complex environmental microbial communities; with shotgun proteomics, which uses liquid chromatography (LC) for separation and tandem mass spectrometry (MS/MS) for analysis, as it is the most promising technique in this field.
Collapse
|
2
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
3
|
Pan X, Fan F, Ding J, Li P, Sun X, Zhong L, Fang Y. Altering functional properties of rice protein hydrolysates by covalent conjugation with chlorogenic acid. Food Chem X 2022; 14:100352. [PMID: 36118986 PMCID: PMC9475698 DOI: 10.1016/j.fochx.2022.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Rice protein hydrolysate was covalently conjugated to chlorogenic acid by three methods. Covalent conjugation resulted in an unfolded structure of rice protein hydrolysate. LYS might be the binding sites for chlorogenic acid grafted on rice protein hydrolysate. Conjugates formed by alkaline method exhibited highest functional property.
Proteins and phenolic compounds are common components in foods that readily interact with each other to yield complexes, leading to changes in the functional properties. In this study, we investigated the effect of covalent conjugation of rice protein hydrolysates (RPH) with chlorogenic acid (CA) on the structural and functional properties of RPH. Three RPH-CA conjugates were prepared by the alkaline, enzyme, and free radical methods, respectively. Covalent conjugation decreased the content of free amino, thiol, and tyrosine groups, and increased in the amount of CA bounds from 15.23 to 21.11 nmol/mg. Moreover, the circular dichroism analysis revealed that covalent conjugation resulted in an increase of random coils. The emulsifying activity and antioxidant capacity of RPH were also improved by the covalent conjugation with CA. This work provides a better understanding of the formation of hydrolysates-chlorogenic acid conjugates, contributing to improving the functional properties of foods.
Collapse
|
4
|
Yang H, Cao Z, Mou R, Cao Z, Chen M. Quantification of rice α‐globulin allergen using liquid chromatography–tandem mass spectrometry combined with cysteine‐specific modifier and extended stable isotope‐labeled peptide. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Huan Yang
- Jiangxi Agricultural University Nanchang 330000 People's Republic of China
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Zhao‐yun Cao
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Ren‐xiang Mou
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Zhen‐zhen Cao
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Ming‐xue Chen
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| |
Collapse
|
5
|
Yang H, Cao Z, Ma Y, Chen M. [Simultaneous determination of three allergic proteins in rice and products by high performance liquid chromatography-tandem mass spectrometry combined with stable isotope-labeled peptides]. Se Pu 2021; 39:1314-1323. [PMID: 34812003 PMCID: PMC9404202 DOI: 10.3724/sp.j.1123.2021.06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
基于稳定同位素标记特征肽段和液相色谱-质谱联用仪建立稻米及制品中3种过敏蛋白质的同时定量方法。稻米及制品样品经盐溶液提取,赖氨酰基内切酶(Lys-C)和胰蛋白酶依次水解,C18-SD柱净化后,采用纳升高效液相色谱-线性离子阱-静电场轨道阱(NanoLC-LTQ-Orbitrap)采集和Protein Discovery软件鉴定,NCBI和Uniprot数据库的基本局部搜索比对工具(BLAST)筛选验证,最终获得表征稻米及制品中α-淀粉酶/胰蛋白酶抑制剂类蛋白质(seed allergenic protein RAG2, RAG2)、乙二醛酶Ⅰ活性蛋白(glyoxalase Ⅰ)和α-球蛋白(19 kDa globulin)3种过敏蛋白质的特异性肽段。3个特异性肽段经液相色谱梯度洗脱,在Poroshell色谱柱上实现完全分离,由三重四极杆质谱仪分析。实验通过优化多反应监测(MRM)质谱参数,比较不同溶剂体系、水解酶种类和酶量等酶解条件,结合内标法定量,实现对稻米及制品中3种蛋白质的绝对定量。实验结果表明,当酶解溶剂中含1 g/L十二烷基硫酸钠,采用Lys-C和胰蛋白酶组合消化策略,可有效提高3种蛋白质的酶切效率至65.7%~97.3%。该方法在1~200 nmol/L范围内线性关系良好,相关系数均大于0.9972, 3种蛋白质的检出限和定量限分别为3 mg/kg和10 mg/kg。3种蛋白质在空白稻米制品基质中3个水平下的加标回收率为80.6%~103.7%,日间和日内精密度均小于11.5%。该方法稳定性好,检测灵敏度高,操作简便,在分析各类稻米及制品中3种过敏蛋白质含量具有广泛的应用前景。
Collapse
Affiliation(s)
- Huan Yang
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China.,Jiangxi Agricultural University, Nanchang 330000, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Youning Ma
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingxue Chen
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
6
|
Graziano S, Marmiroli N, Gullì M. Proteomic analysis of reserve proteins in commercial rice cultivars. Food Sci Nutr 2020; 8:1788-1797. [PMID: 32328244 PMCID: PMC7174207 DOI: 10.1002/fsn3.1375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Rice consumption is rising in western countries with the adoption of new nutritional styles, which require the avoidance of gluten. Nevertheless, there are reports of rice allergic reactions. Rice grains contain a low amount of proteins most of which are storage proteins represented by glutelins, prolamins, albumins, and globulins. Some of these proteins are seed allergenic proteins as α-amylase/trypsin inhibitor, globulins, β-glyoxylase, and several glutelins. Italy is the major rice producer in Europe, and for this, seed reserve proteins of four Italian rice cultivars were characterized by 2D-GE analysis. Some differentially abundant proteins were identified and classified as allergenic proteins, prompting a further characterization of the genes encoding some of these proteins. In particular, a deletion in the promoter region of the 19 KDa globulin gene has been identified, which may be responsible for the different abundance of the protein in the Karnak cultivar. This polymorphism can be applied for cultivar identification in commercial samples. Seed proteome was characterized by a variable combination of several proteins, which may determine a different allergenic potential. Proteomic and genomic allowed to identify the protein profile of four commercial cultivars and to develop a molecular marker useful for the analysis of commercial products.
Collapse
Affiliation(s)
- Sara Graziano
- Interdepartmental Center SITEIA.PARMAUniversity of ParmaParco Area delle ScienzeParmaItaly
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMAUniversity of ParmaParco Area delle ScienzeParmaItaly
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMAUniversity of ParmaParco Area delle ScienzeParmaItaly
- Department of ChemistryLife Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| |
Collapse
|
7
|
Dhondalay GK, Rael E, Acharya S, Zhang W, Sampath V, Galli SJ, Tibshirani R, Boyd SD, Maecker H, Nadeau KC, Andorf S. Food allergy and omics. J Allergy Clin Immunol 2019; 141:20-29. [PMID: 29307411 DOI: 10.1016/j.jaci.2017.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023]
Abstract
Food allergy (FA) prevalence has been increasing over the last few decades and is now a global health concern. Current diagnostic methods for FA result in a high number of false-positive results, and the standard of care is either allergen avoidance or use of epinephrine on accidental exposure, although currently with no other approved treatments. The increasing prevalence of FA, lack of robust biomarkers, and inadequate treatments warrants further research into the mechanism underlying food allergies. Recent technological advances have made it possible to move beyond traditional biological techniques to more sophisticated high-throughput approaches. These technologies have created the burgeoning field of omics sciences, which permit a more systematic investigation of biological problems. Omics sciences, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, have enabled the construction of regulatory networks and biological pathway models. Parallel advances in bioinformatics and computational techniques have enabled the integration, analysis, and interpretation of these exponentially growing data sets and opens the possibility of personalized or precision medicine for FA.
Collapse
Affiliation(s)
- Gopal Krishna Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Efren Rael
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Swati Acharya
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif
| | - Robert Tibshirani
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, Calif
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Holden Maecker
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Kari Christine Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif.
| | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
8
|
Pan X, Fang Y, Wang L, Shi Y, Xie M, Xia J, Pei F, Li P, Xiong W, Shen X, Hu Q. Covalent Interaction between Rice Protein Hydrolysates and Chlorogenic Acid: Improving the Stability of Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4023-4030. [PMID: 30901199 DOI: 10.1021/acs.jafc.8b06898] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein hydrolysates, as surfactants, can scavenge radicals, but their poor distributions at the oil-water interface limit their storage stability. Therefore, we studied covalent interaction between rice protein hydrolysates and chlorogenic acid under alkaline conditions to improve the physical and oxidative stability of oil-in-water emulsions. Turbidity and particle size measurements demonstrated the formation of hydrolysates-chlorogenic acid complexes, and their covalent interaction resulted in the decrease and redshift of the fluorescence intensity. The emulsifying activity of the hydrolysates could be effectively improved after the covalent interaction with 0.025% chlorogenic acid. The modified emulsions possessed a notable physical stability according to the least changes in size (0.08 μm) and ζ-potential (3.34 mV) of the emulsion ( P > 0.05). Moreover, the covalent interaction endowed modified emulsions with high oxidative stability to effectively inhibit lipid oxidative deterioration during storage. The adsorption of hydrolysates to the emulsion interface was increased by the adequate addition of chlorogenic acid, which resulted in the oil droplet being surrounded by a thicker interfacial film. The covalent interaction between the protein hydrolysates and chlorogenic acid could be used to construct natural emulsion systems with a higher physical and oxidative stability during storage.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Yong Fang
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Lingling Wang
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Yi Shi
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Minhao Xie
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Ji Xia
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Fei Pei
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Peng Li
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Wenfei Xiong
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Xinchun Shen
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| | - Qiuhui Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety , Nanjing 210023 , China
| |
Collapse
|
9
|
Sarkar P, Jana K, Sikdar SR. Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. PLANTA 2017; 246:1029-1044. [PMID: 28770337 DOI: 10.1007/s00425-017-2750-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Transgenic mustard plants ( Brassica juncea ) expressing non-allergenic and biologically safe RiD peptide show higher tolerance against Lipaphis erysimi. Rorippa indica defensin (RiD) has previously been reported as a novel insecticidal protein derived from a wild crucifer Rorippa indica. RiD was found to have an effective insecticidal property against mustard aphid, Lipaphis erysimi. In the present study, RiD was highly upregulated in R. indica during aphid infestation initiating a defense system mediated by jasmonic acid (JA), but not by salicylic acid (SA)/abscisic acid (ABA). RiD has also been assessed for biosafety according to the FAO/WHO guideline (allergenicity of genetically modified foods; Food And Agriculture Organisation of the United Nations, Rome, Italy, 2001) and Codex Alimentarius Guideline (Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. Codex Alimentarius Commission. GL, pp 71-2009, 2009). The purified protein was used to sensitize BALB/c mice and they showed normal histopathology of lung and no elevated IgE level in their sera. As the protein was found to be biologically safe and non-allergenic, it was used to develop transgenic Brassica juncea plants with enhanced aphid tolerance, which is one of the most important oilseed crops and is mostly affected by the devastating pest-L. erysimi. The transgene integration was monitored by Southern hybridization, and the positive B. juncea lines were further analyzed by Western blot, ELISA, immunohistolocalization assays and in planta insect bioassay. Transgenic plants expressing RiD conferred a higher level of tolerance against L. erysimi. All these results demonstrated that RiD is a novel, biologically safe, effective insecticidal agent and B. juncea plants expressing RiD are important components of integrated pest management.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054, India
| | - Kuladip Jana
- Department of Molecular Medicine, Centenary Campus, Bose Institute, Kolkata, 700054, India
| | - Samir Ranjan Sikdar
- Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
10
|
Jain A, Salunke DM. Crystal structure of nonspecific lipid transfer protein from Solanum melongena. Proteins 2017; 85:1820-1830. [DOI: 10.1002/prot.25335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Abha Jain
- Regional Centre for Biotechnology, Structural Biology Lab; Faridabad 121001 India
- Manipal University; Manipal Karnataka 576104 India
| | - Dinakar M. Salunke
- Regional Centre for Biotechnology, Structural Biology Lab; Faridabad 121001 India
- International Centre for Genetic Engineering and Biotechnology, Structural Immunology Lab; New Delhi 110067 India
| |
Collapse
|
11
|
Singh M, Agarwal A, Chatterjee B, Chauhan A, Das RR, Paul N. Correlation of cutaneous sensitivity and cytokine response in children with asthma. Lung India 2017; 34:506-510. [PMID: 29098994 PMCID: PMC5684806 DOI: 10.4103/lungindia.lungindia_357_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Food allergy occurs in a significant portion of pediatric asthma. Various cells and their mediators/cytokines play a pivotal role in orchestrating the airway inflammatory response in asthma. Objective: To study the cutaneous hypersensitivity, Th1, Th2, and Th17 response of pediatric population with asthma and genetic predisposition to atopy, by determining total immunoglobulin E (IgE) level in response to various food allergens. Materials and Methods: Fifty asthmatic children with a history of worsening symptoms by various food allergens (study group) and twenty healthy children (control group) were included. Food allergy was assessed through skin prick test (SPT) of various food allergens. Total serum IgE level was measured by sandwich ELISA, and T-cell (Th1, Th2, and Th17)-dependent cytokines were measured by flow cytometry. Results: All 50 asthmatic children in the study group showed SPT positivity against various food allergens (rice = 17; banana, fish and groundnut = 10; wheat = 9; milk and orange = 7; egg = 6; and mango = 4). The average total IgE level in the study group was 316.8 ± 189.8 IU/mL. A significant positive correlation of total IgE with interleukin 17 (IL-17) (r = 0.796; P < 0.0001), IL-13 (r = 0.383; P = 0.01), and IL-4 (r = 0.263; P = 0.043) level was noted. A significant negative correlation of total IgE was noted with interferon gamma (r = −0.5823; P < 0.0001) and IL-10 (r = −0.4474; P < 0.001) level and the duration of breastfeeding (r = −0.31, P = 0.03). Conclusions: The present study found a positive correlation between total serum IgE level and Th2, Th17 cytokines in a pediatric population with asthma. A significant negative correlation was found between the duration of breastfeeding and the cytokines.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Agarwal
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishnupada Chatterjee
- Department of Natural Science, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Anil Chauhan
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashmi Ranjan Das
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Nandini Paul
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|