1
|
Arines FM, Wielenga A, Henn D, Burata OE, Garcia FN, Stockbridge RB, Li M. Lysosomal membrane transporter purification and reconstitution for functional studies. Mol Biol Cell 2024; 35:ar28. [PMID: 38117592 PMCID: PMC10916862 DOI: 10.1091/mbc.e23-06-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes achieve their function through numerous transporters that import or export nutrients across their membrane. However, technical challenges in membrane protein overexpression, purification, and reconstitution hinder our understanding of lysosome transporter function. Here, we developed a platform to overexpress and purify the putative lysine transporter Ypq1 using a constitutive overexpression system in protease- and ubiquitination-deficient yeast vacuoles. Using this method, we purified and reconstituted Ypq1 into proteoliposomes and showed lysine transport function, supporting its role as a basic amino acid transporter on the vacuole membrane. We also found that the absence of lysine destabilizes purified Ypq1 and causes it to aggregate, consistent with its propensity to be downregulated in vivo upon lysine starvation. Our approach may be useful for the biochemical characterization of many transporters and membrane proteins to understand organellar transport and regulation.
Collapse
Affiliation(s)
- Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Aleksander Wielenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Olive E. Burata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Francisco Narro Garcia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Arines FM, Wielenga A, Burata OE, Garcia FN, Stockbridge RB, Li M. Lysosome transporter purification and reconstitution identifies Ypq1 pH-gated lysine transport and regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535002. [PMID: 37034749 PMCID: PMC10081341 DOI: 10.1101/2023.03.31.535002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Lysosomes achieve their function through numerous transporters that import or export nutrients across their membrane. However, technical challenges in membrane protein overexpression, purification, and reconstitution hinder our understanding of lysosome transporter function. Here, we developed a platform to overexpress and purify the putative lysine transporter Ypq1 using a constitutive overexpression system in protease- and ubiquitination-deficient yeast vacuoles. Using this method, we purified and reconstituted Ypq1 into proteoliposomes and showed lysine transport function, supporting its role as a basic amino acid transporter on the vacuole membrane. We also found that the absence of lysine destabilizes purified Ypq1 and causes it to aggregate, consistent with its propensity to be downregulated in vivo upon lysine starvation. Our approach may be useful for the biochemical characterization of many transporters and membrane proteins to understand organellar transport and regulation.
Collapse
Affiliation(s)
- Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aleksander Wielenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olive E. Burata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francisco Narro Garcia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Ohnishi S, Kawano-Kawada M, Yamamoto Y, Akiyama K, Sekito T. A vacuolar membrane protein Vsb1p contributes to the vacuolar compartmentalization of basic amino acids in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2022; 86:763-769. [PMID: 35289847 DOI: 10.1093/bbb/zbac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022]
Abstract
Accumulation levels of Arg, Lys, and His in vacuoles of Schizosaccharomyces pombe cells were drastically decreased by the disruption of SPAC24H6.11c (vsb1+) gene identified by a homology search with the VSB1 gene of Saccharomyces cerevisiae. The Vsb1p fused with green fluorescent protein particularly localized at vacuolar membranes in S. pombe cells. Overexpression of vsb1+ markedly increased vacuolar levels of basic amino acids; however, overexpression of the vsb1D174A mutant did not affect the levels of these amino acids. These results suggest that the vsb1+ contributes to the accumulation of basic amino acids into the vacuoles of S. pombe, and the aspartate residue in the putative first transmembrane domain conserved among fungal homologs is crucial for the function of Vsb1p.
Collapse
Affiliation(s)
- Shota Ohnishi
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Advanced Research Support Center, Ehime University, Matsuyama, Japan
| | - Yusuke Yamamoto
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Koichi Akiyama
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Advanced Research Support Center, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
4
|
Kawano-Kawada M, Ichimura H, Ohnishi S, Yamamoto Y, Kawasaki Y, Sekito T. Ygr125w/Vsb1-dependent accumulation of basic amino acids into vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1157-1164. [PMID: 33704406 DOI: 10.1093/bbb/zbab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 01/23/2023]
Abstract
The Ygr125w was previously identified as a vacuolar membrane protein by a proteomic analysis. We found that vacuolar levels of basic amino acids drastically decreased in ygr125wΔ cells. Since N- or C-terminally tagged Ygr125w was not functional, an expression plasmid of YGR125w with HA3-tag inserted in its N-terminal hydrophilic region was constructed. Introduction of this plasmid into ygr125w∆ cells restored the vacuolar levels of basic amino acids. We successfully detected the uptake activity of arginine by the vacuolar membrane vesicles depending on HA3-YGR125w expression. A conserved aspartate residue in the predicted first transmembrane helix (D223) was indispensable for the accumulation of basic amino acids. YGR125w has been recently reported as a gene involved in vacuolar storage of arginine; and it is designated as VSB1. Taken together, our findings indicate that Ygr125w/Vsb1 contributes to the uptake of arginine into vacuoles and vacuolar compartmentalization of basic amino acids.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Haruka Ichimura
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Shota Ohnishi
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yusuke Yamamoto
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yumi Kawasaki
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
5
|
Kawano-Kawada M, Ueda T, Mori H, Ichimura H, Takegawa K, Sekito T. Stm1 is a vacuolar PQ-loop protein involved in the transport of basic amino acids in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183507. [PMID: 33189720 DOI: 10.1016/j.bbamem.2020.183507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
The stm1+ (SPAC17C9.10) gene of Schizosaccharomyces pombe is closely related to genes encoding vacuolar PQ-loop proteins, Ypq1, Ypq2, and Ypq3, of Saccharomyces cerevisiae. When stm1+ fused with GFP was expressed in fission or budding yeast, Stm1-GFP localized at the vacuolar membrane. Isolated vacuolar membrane vesicles from S. cerevisiae cells overexpressing stm1+ exhibited stm1+-dependent arginine and lysine uptake activity. Exchange activity of arginine and histidine/arginine, as observed for Ypq2 of S. cerevisiae, was also detected in the vesicles expressing stm1+. The expression levels of stm1+ in S. pombe cells significantly affected the vacuolar contents of lysine, histidine, and arginine. These results suggest that Stm1 is a vacuolar PQ-loop protein involved in the transport of basic amino acids across the vacuolar membrane.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Advanced Research Support Center (ADRES), Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Taisuke Ueda
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hikari Mori
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Ichimura
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
6
|
Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane. PLoS Genet 2020; 16:e1008966. [PMID: 32776922 PMCID: PMC7440668 DOI: 10.1371/journal.pgen.1008966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen. The lysosome-like vacuole of the yeast Saccharomyces cerevisiae is an important storage compartment for diverse nutrients, including the cationic amino acid arginine, which accumulates at high concentrations in this organelle in nitrogen-replete cells. When these cells are transferred to a nitrogen-free medium, vacuolar arginine is mobilized to the cytosol, where it is used as an alternative nitrogen source to sustain growth. Although this phenomenon has been observed since the 1980s, the identity of the vacuolar transporters involved in the accumulation and the mobilization of arginine is not well established, and whether these processes are regulated according to nutritional cues remains unknown. In this study, we exploited in vitro and in vivo uptake assays in vacuoles to identify and characterize Vsb1 and Ypq2 as vacuolar membrane proteins mediating import and export of arginine, respectively. We further provide evidence that Vsb1 and Ypq2 are inversely regulated according to the nitrogen status of the cell. Our study sheds new light on the poorly studied topic of the diversity and metabolic control of vacuolar transporters. It also raises novel questions about the molecular mechanisms underlying their coordinated regulation and, by extension, the regulation of lysosomal transporters in human cells.
Collapse
|
7
|
A PQ-loop protein Ypq2 is involved in the exchange of arginine and histidine across the vacuolar membrane of Saccharomyces cerevisiae. Sci Rep 2019; 9:15018. [PMID: 31636363 PMCID: PMC6803629 DOI: 10.1038/s41598-019-51531-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 11/08/2022] Open
Abstract
In nutrient-rich conditions, basic amino acids are actively accumulated into the vacuoles by H+-coupled transporters in Saccharomyces cerevisiae. In addition to the H+-coupled systems, the existence of an exchanger for arginine and histidine was indicated by kinetic analysis using isolated vacuolar membrane vesicles; however, the gene(s) involved in the activity has not been identified. Here, we show that the uptake activity of arginine driven by an artificially imposed histidine gradient decreased significantly by the disruption of the gene encoding vacuolar PQ-loop protein Ypq2, but not by those of Ypq1 and Ypq3. The exchange activity was restored by the expression of YPQ2. Furthermore, the substitution of a conserved proline residue, Pro29, in Ypq2 greatly decreased the exchange activity. These results suggest that Ypq2 is responsible for the exchange activity of arginine and histidine across the vacuolar membrane, and the conserved proline residue in the PQ-loop motif is required for the activity.
Collapse
|
8
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
9
|
Kawano-Kawada M, Kakinuma Y, Sekito T. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role. Biol Pharm Bull 2019; 41:1496-1501. [PMID: 30270317 DOI: 10.1248/bpb.b18-00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In yeast cells growing under nutrient-rich condition approximately 50% of total amino acids are accumulated in the vacuoles; however, the composition of amino acids in the cytosol and in the vacuoles is quite different. The vacuoles, like lysosomes, degrade proteins transported into their lumen and produce amino acids. These amino acids should be quickly excreted to the cytosol under nutrient starvation condition and recycled for de novo protein synthesis. These suggest that specific machineries that transport amino acids into and out of the vacuoles operate at the vacuolar membrane. Several families of transporter involved in the vacuolar compartmentalization of amino acids have been identified and characterized using budding yeast Saccharomyces cerevisiae. In this review, we describe the vacuolar amino acid transporters identified so far and introduce recent findings on their activity and physiological function.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Department of Biosicence, Graduate School of Agriculture, Ehime University.,Advanced Research Support Center (ADRES), Ehime University
| | - Yoshimi Kakinuma
- Department of Biosicence, Graduate School of Agriculture, Ehime University
| | - Takayuki Sekito
- Department of Biosicence, Graduate School of Agriculture, Ehime University
| |
Collapse
|
10
|
Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast. G3-GENES GENOMES GENETICS 2017; 7:179-192. [PMID: 28057802 PMCID: PMC5217107 DOI: 10.1534/g3.116.035238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 4 P-type ATPases (P4-ATPases) function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer, to generate and maintain asymmetric distribution of phospholipids at the plasma membrane and endosomal/Golgi membranes. The budding yeast Saccharomyces cerevisiae has four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), associated with the Cdc50p family noncatalytic subunit, and one monomeric flippase, Neo1p. They have been suggested to function in vesicle formation in membrane trafficking pathways, but details of their mechanisms remain to be clarified. Here, to search for novel factors that functionally interact with flippases, we screened transposon insertional mutants for strains that suppressed the cold-sensitive growth defect in the cdc50Δ mutant. We identified a mutation of YMR010W encoding a novel conserved membrane protein that belongs to the PQ-loop family including the cystine transporter cystinosin and the SWEET sugar transporters. We named this gene CFS1 (cdc fifty suppressor 1). GFP-tagged Cfs1p was partially colocalized with Drs2p and Neo1p to endosomal/late Golgi membranes. Interestingly, the cfs1Δ mutation suppressed growth defects in all flippase mutants. Accordingly, defects in membrane trafficking in the flippase mutants were also suppressed. These results suggest that Cfs1p and flippases function antagonistically in membrane trafficking pathways. A growth assay to assess sensitivity to duramycin, a phosphatidylethanolamine (PE)-binding peptide, suggested that the cfs1Δ mutation changed PE asymmetry in the plasma membrane. Cfs1p may thus be a novel regulator of phospholipid asymmetry.
Collapse
|