1
|
Tamano K. Advancements in lipid production research using the koji-mold Aspergillus oryzae and future outlook. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1526568. [PMID: 39736986 PMCID: PMC11683092 DOI: 10.3389/ffunb.2024.1526568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025]
Abstract
Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus Aspergillus oryzae. To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement. Culturing A. oryzae in a liquid medium supplemented with non-ionic surfactants could also lead to the effective release of free fatty acids from the cells. The current review highlights the advancements made in this field so far and discusses the future outlook for research on lipid production using A. oryzae. I hope the contents are useful for researchers in this field to consider the strategy of increasing production of various valuable metabolites as well as lipids in A. oryzae.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
2
|
Tamano K, Nakai S, Takayama H, Imai Y. Overexpression of a predicted transketolase gene and disruption of an α-1,3-glucan synthase gene in Aspergillus oryzae DGLA3 strain enhances the yield of free dihomo-γ-linolenic acid. Biosci Biotechnol Biochem 2023; 87:448-457. [PMID: 36617231 DOI: 10.1093/bbb/zbad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Free dihomo-γ-linolenic acid (DGLA), a polyunsaturated free fatty acid (FFA), can potentially be used to produce eicosanoid pharmaceuticals, such as prostaglandin E1. Previously, we constructed an Aspergillus oryzae mutant strain, named DGLA3, which produced free DGLA at an increased yield by faaA gene disruption and cooverexpression of one elongase and two desaturase genes. In this study, we achieved a further increase. Since FFA production is increased by enhancing the pentose phosphate pathway, we overexpressed a predicted transketolase gene composing the pathway in DGLA3, which consequently increased the free DGLA yield by 1.9-fold to 403 mg/L. Additionally, we disrupted the α-1,3-glucan synthase gene agsB involved in cell-wall biosynthesis, which further increased it by 1.3-fold to 533 mg/L. Overall, the yield increased by 2.5-fold. Free DGLA productivity and biomass increased similarly, but residual glucose concentration decreased. Increased hyphal dispersion appeared to cause additional glucose consumption, resulting in an increase in biomass and yield.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Shinjuku-ku, Tokyo, Japan
| | - Shiori Nakai
- Hokkaido High-Technology College, Eniwa, Hokkaido, Japan
| | - Haruka Takayama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yasuhiko Imai
- Noda Institute for Scientific Research, Noda, Chiba, Japan
| |
Collapse
|
3
|
Fan T, Ren R, Tang S, Zhou Y, Cai M, Zhao W, He Y, Xu J. Transcriptomics combined with metabolomics unveiled the key genes and metabolites of mycelium growth in Morchella importuna. Front Microbiol 2023; 14:1079353. [PMID: 36819010 PMCID: PMC9929000 DOI: 10.3389/fmicb.2023.1079353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Morels (Morchella) are one of the most popular edible fungi in the world, especially known for their rich nutrition and delicious taste. Earlier research indicates that the production of fruiting bodies can be affected by the growth of mycelium. To investigate the molecular mechanisms underlying mycelium growth in Morchella importuna, we performed transcriptome analysis and metabolomics analysis of three growth stages of the hypha of M. importuna. As a result, 24 differentially expressed genes, such as transketolase (tktA), glucose-6-phosphate dehydrogenase (G6PDH), fructose-diphosphate aldolase (Fba), and ribose-5-phosphate isomerase (rpiA), as well as 15 differentially accumulated metabolites, including succinate and oxaloacetate, were identified and considered as the key genes and metabolites to mycelium growth in M. importuna. In addition, guanosine 3',5'-cyclic monophosphate (cGMP), guanosine-5'-monophosphate (GMP), and several small peptides were found to differentially accumulate in different growth stages. Furthermore, five pathways, namely, starch and sucrose metabolism, pentose and glucuronate interconversions, fructose and mannose metabolism, tyrosine metabolism, and purine nucleotides, enriched by most DEGs, existed in the three compared groups and were also recognized as important pathways for the development of mycelium in morels. The comprehensive transcriptomics and metabolomics data generated in our study provided valuable information for understanding the mycelium growth of M. importuna, and these data also unveiled the key genes, metabolites, and pathways involved in mycelium growth. This research provides a great theoretical basis for the stable production and breeding of morels.
Collapse
Affiliation(s)
- Tingting Fan
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Rui Ren
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Shaojun Tang
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Yiyun Zhou
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Meng Cai
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Wenwen Zhao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Yuelin He
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Jun Xu
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China,*Correspondence: Jun Xu ✉
| |
Collapse
|
4
|
Recent trends in the field of lipid engineering. J Biosci Bioeng 2022; 133:405-413. [DOI: 10.1016/j.jbiosc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
|
5
|
Identification of Six Thiolases and their Effects on Fatty Acid and Ergosterol Biosynthesis in Aspergillus oryzae. Appl Environ Microbiol 2022; 88:e0237221. [PMID: 35138925 DOI: 10.1128/aem.02372-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiolase plays important roles in lipid metabolism. It can be divided into degradative thiolases (Thioase I) and biosynthetic thiolases (thiolases II), which are involved in fatty acid β-oxidation and acetoacetyl-CoA biosynthesis, respectively. The Saccharomyces cerevisiae (S. cerevisiae) genome harbors only one gene each for thioase I and thiolase II, namely, Pot1 and Erg10, respectively. In this study, six thiolases (named AoErg10A-AoErg10F) were identified in Aspergillus oryzae (A. oryzae) genome using bioinformatics analysis. Quantitative reverse transcription-PCR (qRT-PCR) indicated that the expression of these six thiolases varied at different growth time and under different forms of abiotic stress. Subcellular localization analysis showed that AoErg10A was located in the cytoplasm, AoErg10B and AoErg10C in the mitochondria, and AoErg10D-AoErg10F in the peroxisome. Yeast heterologous complementation assays revealed that AoErg10A, AoErg10D, AoErg10E, AoErg10F and cytoplasmic AoErg10B (AoErg10BΔMTS) recovered the phenotypes of S. cerevisiae erg10 weak and lethal mutants, and that only AoErg10D-F recovered the phenotype of the pot1 mutant that cannot use oleic acid as the carbon source. Overexpression of AoErg10s either affected the growth speed or sporulation of the transgenic strains. In addition, the fatty acid and ergosterol content changed in all the AoErg10-overexpressing strains. This study revealed the function of six thiolases in A. oryzae and their effect on growth, and fatty acid and ergosterol biosynthesis, which may lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi. Importance Thiolase including thioase I and thiolase II, plays important roles in lipid metabolism. A. oryzae, one of the most industrially important filamentous fungi, has been widely used for manufacturing oriental fermented food such as sauce, miso, and sake for a long time. Besides, A. oryzae has a high capability in production of high lipid content and has been used for lipid production. Thus, it is very important to investigate the function of thiolases in A. oryzae. In this study, six thiolase (named AoErg10A-AoErg10F) were identified by bioinformatics analysis. Unlike other reported thiolases in fungi, three of the six thiolases showed dual function of thioase I and thiolase II in S. cerevisiae, indicating the lipid metabolism is more complex in A. oryzae. The reveal of function of these thiolases in A. oryzae can lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi.
Collapse
|
6
|
Wong PS, Tamano K, Aburatani S. Improvement of Free Fatty Acid Secretory Productivity in Aspergillus oryzae by Comprehensive Analysis on Time-Series Gene Expression. Front Microbiol 2021; 12:605095. [PMID: 33897630 PMCID: PMC8062725 DOI: 10.3389/fmicb.2021.605095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus oryzae is a filamentous fungus that has historically been utilized in the fermentation of food products. In recent times, it has also been introduced as a component in the industrial biosynthesis of consumable compounds, including free fatty acids (FFAs), which are valuable and versatile products that can be utilized as feedstocks in the production of other commodities, such as pharmaceuticals and dietary supplements. To improve the FFA secretory productivity of A. oryzae in the presence of Triton X-100, we analyzed the gene expression of a wild-type control strain and a disruptant strain of an acyl-CoA synthetase gene, faaA, in a time-series experiment. We employed a comprehensive analysis strategy using the baySeq, DESeq2, and edgeR algorithms to clarify the vital pathways for FFA secretory productivity and select genes for gene modification. We found that the transport and metabolism of inorganic ions are crucial in the initial stages of FFA production and revealed 16 candidate genes to be modified in conjunction with the faaA disruption. These genes were verified through the construction of overexpression strains, and showed that the manipulation of reactions closer to the FFA biosynthesis step led to a higher increase in FFA secretory productivity. This resulted in the most successful overexpression strains to have an FFA secretory productivity more than two folds higher than that of the original faaA disruptant. Our study provides guidance for further gene modification for FFA biosynthesis in A. oryzae and for enhancing the productivity of other metabolites in other microorganisms through metabolic engineering.
Collapse
Affiliation(s)
- Pui Shan Wong
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sachiyo Aburatani
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
7
|
Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact 2021; 20:59. [PMID: 33658027 PMCID: PMC7931520 DOI: 10.1186/s12934-021-01542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Oleaginous filamentous fungi can accumulate large amount of cellular lipids and potentially serve as a major source of oleochemicals for food, feed, chemical, pharmaceutical, and transport industries. Transesterification of microbial oils is an essential step in microbial lipid production at both laboratory and industrial scale. Direct transesterification can considerably reduce costs, increase sample throughput and improve lipid yields (in particular fatty acid methyl esters, FAMEs). There is a need for the assessment of the direct transesterification methods on a biomass of filamentous fungi due to their unique properties, specifically resilient cell wall and wide range of lipid content and composition. In this study we have evaluated and optimised three common direct transesterification methods and assessed their suitability for processing of fungal biomass. Results The methods, based on hydrochloric acid (Lewis method), sulphuric acid (Wahlen method), and acetyl chloride (Lepage method), were evaluated on six different strains of Mucoromycota fungi by using different internal standards for gas chromatography measurements. Moreover, Fourier transform infrared (FTIR) spectroscopy was used for the detection of residual lipids in the biomass after the transesterification reaction/extraction, while transesterification efficiency was evaluated by nuclear magnetic resonance spectroscopy. The results show that the majority of lipids, in particular triglycerides, were extracted for all methods, though several methods had substandard transesterification yields. Lewis method, optimised with respect to solvent to co-solvent ratio and reaction time, as well as Lepage method, offer precise estimate of FAME-based lipids in fungal biomass. Conclusions The results show that Lepage and Lewis methods are suitable for lipid analysis of oleaginous filamentous fungi. The significant difference in lipid yields results, obtained by optimised and standard Lewis methods, indicates that some of the previously reported lipid yields for oleaginous filamentous fungi must be corrected upwards. The study demonstrates value of biomass monitoring by FTIR, importance of optimal solvent to co-solvent ratio, as well as careful selection and implementation of internal standards for gas chromatography.
Collapse
Affiliation(s)
- Anne Marie Langseter
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| |
Collapse
|
8
|
Huang J, Zhao Q, Bu W, Zhang C, Yang Z, Zhang X, Zhang K. Ultrasound-assisted hydrolysis of lard for free fatty acids catalyzed by combined two lipases in aqueous medium. Bioengineered 2020; 11:241-250. [PMID: 32091302 PMCID: PMC7039637 DOI: 10.1080/21655979.2020.1729678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Lard is a by-product of animal processing. It is inexpensive compared with vegetable oils; however, its use is limited due to the high calorific value and high-saturated fatty acid content. While using lard as the source of free fatty acids (FFA) can significantly increase its utilization value. This study aimed to research the method on efficient hydrolysis of lard catalyzed by combi-lipases and assisted with ultrasound pretreatment. A 1,3-specific lipase from Rhizomucor miehei (termed pRML, 1540 U/mL) and a nonspecific mono- and diacylglycerol lipase from Penicillium cyclopium (termed MDL, 2000 U/mL) were used as biocatalysts. Results showed that the maximum hydrolysis rate of lard after 6 h at 45°C by using pRML and MDL alone was, respectively, 39.9% and 8.5%. When pRML combined with MDL (combi-lipases), hydrolysis rate can reach to 78.1%. While combi-lipases were assisted with 5 min ultrasound pretreatment before the reaction, the hydrolysis rate can further increase to 97%. The combi-lipases with different specificity and assisted with ultrasound pretreatment may be a useful technology for the enzyme production of FFA from complex lipid substrates, such as lard.
Collapse
Affiliation(s)
- Jinjin Huang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyi Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Wei Bu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chunmei Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Zhen Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Kaini Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
9
|
Tamano K, Kuninaga M, Kojima N, Umemura M, Machida M, Koike H. Use of the kojA promoter, involved in kojic acid biosynthesis, for polyketide production in Aspergillus oryzae: implications for long-term production. BMC Biotechnol 2019; 19:70. [PMID: 31655589 PMCID: PMC6814975 DOI: 10.1186/s12896-019-0567-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspergillus oryzae, a useful industrial filamentous fungus, produces limited varieties of secondary metabolites, such as kojic acid. Thus, for the production of valuable secondary metabolites by genetic engineering, the species is considered a clean host, enabling easy purification from cultured cells. A. oryzae has been evaluated for secondary metabolite production utilizing strong constitutive promoters of genes responsible for primary metabolism. However, secondary metabolites are typically produced by residual nutrition after microbial cells grow to the stationary phase and primary metabolism slows. We focused on a promoter of the secondary metabolism gene kojA, a component of the kojic acid biosynthetic gene cluster, for the production of other secondary metabolites by A. oryzae. RESULTS A kojA disruptant that does not produce kojic acid was utilized as a host strain for production. Using this host strain, a mutant that expressed a polyketide synthase gene involved in polyketide secondary metabolite production under the kojA gene promoter was constructed. Then, polyketide production and polyketide synthase gene expression were observed every 24 h in liquid culture. From days 0 to 10 of culture, the polyketide was continuously produced, and the synthase gene expression was maintained. Therefore, the kojA promoter was activated, and it enabled the continuous production of polyketide for 10 days. CONCLUSIONS The combined use of the kojA gene promoter and a kojA disruptant proved useful for the continuous production of a polyketide secondary metabolite in A. oryzae. These findings suggest that this combination can be applied to other secondary metabolites for long-term production.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan. .,AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-20, Building 63, Nishi-waseda campus, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Mahoko Kuninaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Myco Umemura
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-20, Building 63, Nishi-waseda campus, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Masayuki Machida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
10
|
Heterologous production of free dihomo-γ-linolenic acid by Aspergillus oryzae and its extracellular release via surfactant supplementation. J Biosci Bioeng 2019; 127:451-457. [DOI: 10.1016/j.jbiosc.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 01/21/2023]
|
11
|
High-efficiency extracellular release of free fatty acids from Aspergillus oryzae using non-ionic surfactants. J Biotechnol 2017; 248:9-14. [PMID: 28300661 DOI: 10.1016/j.jbiotec.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 11/21/2022]
Abstract
Free fatty acids (FFAs) are useful for generating biofuel compounds and functional lipids. Microbes are increasingly exploited to produce FFAs via metabolic engineering. However, in many microorganisms, FFAs accumulate in the cytosol, and disrupting cells to extract them is energy intensive. Thus, a simple cost-effective extraction technique must be developed to remove this drawback. We found that FFAs were released from cells of the filamentous fungus Aspergillus oryzae with high efficiency when they were cultured or incubated with non-ionic surfactants such as Triton X-100. The surfactants did not reduce hyphal growth, even at 5% (w/v). When the faaA disruptant was cultured with 1% Triton X-100, more than 80% of the FFAs synthesized de novo were released. When the disruptant cells grown without surfactants were incubated for 1h in 1% Triton X-100 solution, more than 50% of the FFAs synthesized de novo were also released. Other non-ionic surfactants in the same ether series, such as Brij 58, IGEPAL CA-630, and Tergitol NP-40, elicited a similar FFA release. The dry cell weight of total hyphae decreased when grown with 1% Triton X-100. The decrement was 4.9-fold greater than the weight of the released FFAs, implying release of other intracellular compounds. Analysis of the culture supernatant showed that intracellular lactate dehydrogenase was also released, suggesting that FFAs are not released by a specific transporter. Therefore, ether-type non-ionic surfactants probably cause non-specific release of FFAs and other intracellular compounds by increasing cell membrane permeability.
Collapse
|