1
|
Hodgson H, Stephenson MJ, Kikuchi S, Martin LBB, Liu JCT, Casson R, Rejzek M, Sattely ES, Osbourn A. Plants Utilize a Protection/Deprotection Strategy in Limonoid Biosynthesis: A "Missing Link" Carboxylesterase Boosts Yields and Provides Insights into Furan Formation. J Am Chem Soc 2024; 146:29305-29310. [PMID: 39418479 PMCID: PMC11528404 DOI: 10.1021/jacs.4c11213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The furan ring is a defining feature of limonoids, a class of highly rearranged and bioactive plant tetranortriterpenoids. We recently reported an apparent complete biosynthetic pathway to these important natural furanoids. Herein, we disclose the subsequent discovery of a yield-boosting "missing link" carboxylesterase that selectively deprotects a late-stage intermediate, so triggering more efficient furan biosynthesis. This has allowed, for the first time, the isolation and structural elucidation of unknown intermediates, refining our understanding of furan formation in limonoid biosynthesis.
Collapse
Affiliation(s)
- Hannah Hodgson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Michael J. Stephenson
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Shingo Kikuchi
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Laetitia B. B. Martin
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Jack C. T. Liu
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rebecca Casson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Martin Rejzek
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Elizabeth S. Sattely
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Anne Osbourn
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| |
Collapse
|
2
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
3
|
DeMars MD, O’Connor SE. Evolution and diversification of carboxylesterase-like [4+2] cyclases in aspidosperma and iboga alkaloid biosynthesis. Proc Natl Acad Sci U S A 2024; 121:e2318586121. [PMID: 38319969 PMCID: PMC10873640 DOI: 10.1073/pnas.2318586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.
Collapse
Affiliation(s)
- Matthew D. DeMars
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
4
|
Nomura T, Omode A, Kato Y. Identification of tuliposides K-M in tulip bulbs via an enzyme reaction-based screening method using a tuliposide-converting enzyme. Z NATURFORSCH C 2023; 78:353-363. [PMID: 37402691 DOI: 10.1515/znc-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Tuliposides (Pos) are major defense-related secondary metabolites in tulip, having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones (tulipalins) by an endogenous Pos-converting enzyme. Based on this enzyme activity, we examined tulip bulb extracts and detected HPLC peaks that disappeared following the reaction by the Pos-converting enzyme. Spectroscopic analyses of the three purified compounds revealed that one of them was a glucose ester-type Pos, while the other two were identified as a glucoside ester-type Pos. These compounds were designated as PosK, L, and M. They were specific to bulbs, with the highest content in the outermost layer, but they were markedly less abundant than PosG, the minor bulb Pos we identified earlier. The study results suggest that tulip bulbs contain at least four minor Pos in addition to the major 6-PosA. Although PosK-M were present in almost all of the tested tulip cultivars, they were detected in only a few wild species, indicative of their potential utility as chemotaxonomic markers in tulip. Identification of PosK-M as 6-PosA derivatives unveils the biosynthetic diversity of Pos, the well-known group of secondary metabolites in tulip.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Ayami Omode
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Yang YL, Li X, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of carboxylesterase genes in Tenebrio molitor and other four tenebrionids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21967. [PMID: 36111353 DOI: 10.1002/arch.21967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (COEs) have various functions in wide taxons of organisms. In insects, COEs are important enzymes involved in the hydrolysis of a variety of ester-containing xenobiotics, neural signal transmission, pheromone degradation, and reproductive development. Understanding the diversity of COEs is basic to illustrate their functions. In this study, we identified 53, 105, 37, and 39 COEs from the genomes of Tenebrio molitor, Asbolus verucosus, Hycleus cichorii, and H. phaleratus in the superfamily of Tenebrionidea, respectively. Phylogenetic analysis showed that 234 COEs from these four species and those reported in Tribolium castaneum (63) could be divided into 12 clades and three major classes. The α-esterases significantly expanded in T. molitor, A. verucosus, and T. castaneum compared to dipteran and hymenopteran insects. In T. molitor, most COEs showed tissue and stage-specific but not a sex-biased expression. Our results provide insights into the diversity and evolutionary characteristics of COEs in tenebrionids, and lay a foundation for the functional characterization of COEs in the yellow mealworm.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Science, Lijiang, China
| | - Xun Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
6
|
Kato Y, Nomura T. Occurrence of Z-2-oxo-4-methyl-3-pentene-1,5-dioic acid and its regioisomer 4-methylene-2-oxo-glutaric acid in tulip tissues. Z NATURFORSCH C 2022; 77:317-330. [PMID: 35245421 DOI: 10.1515/znc-2021-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Although Z-2-oxo-4-methyl-3-pentene-1,5-dioic acid (Z-OMPD) has been identified as a major dicarboxylic acid in tulip tissues, its biosynthetic pathway has not been elucidated. Herein, Z-OMPD was isolated from tulip leaves and chemically synthesized. Comparisons of these samples revealed that Z-OMPD exists as a tautomeric mixture at physiological pH. As a regioisomer of Z-OMPD, we enzymatically and chemically prepared 4-methylene-2-oxo-glutaric acid (4-MEOG) for the first time. Using these compounds as standards, the occurrence of Z-OMPD and 4-MEOG in various tissues of the tulip cultivar "Murasakizuisho" was evaluated directly and by 2,4-dinitrophenylhydrazone derivatization. Z-OMPD was found to be abundant in the aerial tissues, whereas 4-MEOG was almost absent from all tissues. Stability analyses of Z-OMPD and 4-MEOG revealed that no double bond isomerization occurred at physiological pH, suggesting that enzyme systems are responsible for Z-OMPD biosynthesis in tulip tissues.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
7
|
Shigetomi K, Sakakibara Y, Sai Y, Uraki Y, Ubukata M. A New Template of MIitsunobu Acylate Cleavable in Non-Alkaline Conditions. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Godehard SP, Badenhorst CPS, Müller H, Bornscheuer UT. Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the Mycobacterium smegmatis Acyltransferase MsAcT. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
9
|
Nomura T, Kato Y. Identification of tuliposide G, a novel glucoside ester-type tuliposide, and its distribution in tulip. ACTA ACUST UNITED AC 2020; 75:75-86. [PMID: 32092042 DOI: 10.1515/znc-2019-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Tuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4'-hydroxy-2'-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name 'tuliposide G' (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, Tel.: +81-766-56-7500 (ex. 1516), Fax: +81-766-56-2498
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
10
|
Nomura T, Ogita S, Kato Y. Isolation and identification of tuliposides D and F from tulip cultivars. ACTA ACUST UNITED AC 2020; 75:7-12. [PMID: 31639104 DOI: 10.1515/znc-2019-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023]
Abstract
6-Tuliposides A (6-PosA) and B (6-PosB) are major defensive secondary metabolites in tulip cultivars (Tulipa gesneriana), having an acyl group at the C-6 position of d-glucose. Although some wild tulip species produce 1,6-diacyl-glucose type of Pos (PosD and PosF), as well as 6-PosA/B, they have not yet been isolated from tulip cultivars. Here, aiming at verifying the presence of PosD and PosF in tulip cultivars, tissue extracts of 25 cultivars were analyzed by high-performance liquid chromatography (HPLC). Although no HPLC peaks for PosD nor PosF were detected in most cultivars, we found two cultivars giving a minute HPLC peak for PosD and the other two cultivars giving that for PosF. PosD and PosF were then purified from petals of cultivar 'Orca' and from pistils of cultivar 'Murasakizuisho', respectively, and their identities were verified by spectroscopic analyses. This is the first report that substantiates the presence of 1,6-diacyl-glucose type of Pos in tulip cultivars.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, Phone: +81-766-56-7500 (ex. 1516), Fax: +81-766-56-2498
| | - Shinjiro Ogita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima 727-0023, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
11
|
Kato Y, Futanaga T, Nomura T. Substrate specificity of tuliposide-converting enzyme, a unique non-ester-hydrolyzing carboxylesterase in tulip: Effects of the alcohol moiety of substrate on the enzyme activity. Bioorg Med Chem Lett 2019; 29:664-667. [PMID: 30595444 DOI: 10.1016/j.bmcl.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/24/2022]
Abstract
6-Tuliposides A (PosA) and B (PosB) are glucose esters accumulated in tulip (Tulipa gesneriana) as major defensive secondary metabolites. Pos-converting enzymes (TgTCEs), which we discovered previously from tulip, catalyze the conversion reactions of PosA and PosB to antimicrobial tulipalins A (PaA) and B (PaB), respectively. The TgTCEs, belonging to the carboxylesterase family, specifically catalyze intramolecular transesterification, but not hydrolysis. In this report, we synthesized analogues of Pos with various alcohol moieties, and measured the TgTCE activity together with a determination of the kinetic parameters for these analogues with a view to probe the substrate recognition mechanism of the unique non-ester-hydrolyzing TgTCEs. It was found that d-glucose-like structure and number of the hydroxyl group in alcohol moiety are important for substrate recognition by TgTCEs. Among the analogues examined, 1,2-dideoxy analogues of PosA and PosB were found to be recognized by the TgTCEs more specifically than the authentic substrates by lowering Km values. The present results will provide a basis for designing simple, stable synthetic substrate analogues for crystallographic analysis of TgTCEs.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Takashi Futanaga
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
12
|
Qu Y, Safonova O, De Luca V. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:257-266. [PMID: 30256480 DOI: 10.1111/tpj.14111] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 05/23/2023]
Abstract
The important anticancer drugs, vinblastine, vincristine and analogs, are composed of the monoterpenoid indole alkaloids (MIAs), catharanthine and vindoline, found uniquely in the medicinal plant, Catharanthus roseus. While 26 genes involved in the assembly of these two MIAs are known, two key reactions have eluded characterization to complete the documentation of the vinblastine pathway in this plant species. The assembly of these dimeric MIAs requires O-acetylstemmadenine oxidase (ASO) and a dual function geissoschizine synthase (GS) that reduces cathenamine to form geissoschizine, and that also reduces the ASO product to form a common intermediate for subsequent conversion by four separate hydrolases to catharanthine, tabersonine or vincadifformine, respectively. The in planta role of ASO is supported by identifying a single amino acid-substituted ASO mutant with very low enzyme activity and by virus-induced gene silencing of ASO to produce plants that accumulate O-acetylstemmadenine rather than catharanthine and vindoline found in wild-type (WT) plants. The in planta role of GS is supported by showing that a low GS-expressing mutant accumulating lower levels of catharanthine and vindoline also displays significantly lower tabersonine-forming activity in coupled enzyme assays than in the WT background. Gene expression analyses demonstrate that both ASO and GS are highly enriched in the leaf epidermis where the pathways for catharanthine and tabersonine biosynthesis are expressed. The full elucidation of this canonical pathway enables synthetic biology approaches for manufacturing a broad range of MIAs, including these dimers used in cancer treatment.
Collapse
Affiliation(s)
- Yang Qu
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock way, St Catharines, ON, L2S 3A1, Canada
| | - Olga Safonova
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock way, St Catharines, ON, L2S 3A1, Canada
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock way, St Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
13
|
Nomura T, Ogita S, Kato Y. One-Step Enzymatic Synthesis of 1-Tuliposide A Using Tuliposide-Converting Enzyme. Appl Biochem Biotechnol 2018; 188:12-28. [PMID: 30284210 DOI: 10.1007/s12010-018-2903-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/27/2018] [Indexed: 02/04/2023]
Abstract
6-Tuliposides A (6-PosA) and B (6-PosB) are major secondary metabolites in tulip (Tulipa gesneriana), having an acyl group at the C-6 position of D-glucose. They serve as precursors of the antimicrobial α-methylene-γ-butyrolactones tulipalins A (PaA) and B (PaB). The conversions of 6-PosA/6-PosB to PaA/PaB are catalyzed by tuliposide-converting enzymes A and B (TCEA and TCEB), respectively. A minor Pos, 1-PosA, which has the acyl group at the C-1 position of D-glucose, has been identified in some wild tulip species, but availability of this compound is limited. Here, by using the TCEs, we established a facile enzymatic process for 1-PosA synthesis from the naturally occurring 1,6-diacyl-glucose type of Pos (PosD and PosF). We first discovered that TCEA and TCEB react preferentially with PosD and PosF, respectively, to form 1-PosA and the corresponding Pa derived from the 6-acyl group, demonstrating that the TCEs specifically acted on the 6-acyl group, but not the 1-acyl group, of the substrates. Using TCEB, 300 mg of PosF was completely converted to 1-PosA and PaB in 10 min at room temperature. Then, 160 mg of 1-PosA (75% molar yield) was purified by column chromatography. This one-step enzymatic process dramatically improves accessibility to 1-PosA.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Shinjiro Ogita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima, 727-0023, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
14
|
Nomura T, Kuchida R, Kitaoka N, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the third isozyme with a distinct expression profile. Biosci Biotechnol Biochem 2018; 82:810-820. [DOI: 10.1080/09168451.2018.1438170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
6-Tuliposide B (PosB), a major secondary metabolite that accumulates in tulip (Tulipa gesneriana), is converted to the antibacterial lactone, tulipalin B (PaB), by PosB-converting enzyme (TCEB). TgTCEB1 and TgTCEB-R, which encode TCEB, are specifically expressed in tulip pollen and roots, respectively, but are hardly expressed in other tissues (e.g. leaves) despite the presence of substantial PosB-converting activity, suggesting the existence of another TCEB isozyme. Here, we describe the identification of TgTCEB-L (“L” for leaf), a paralog of TgTCEB1 and TgTCEB-R, from leaves via native enzyme purification. The enzymatic characters of TgTCEB-L, including catalytic activity and subcellular localization, were substantially the same as those of TgTCEB1 and TgTCEB-R. However, TgTCEB-L did not exhibit tissue-specific expression. Identification of TgTCEB-L explains the PosB-converting activity detected in tissues where TgTCEB1 and TgTCEB-R transcripts could not be detected, indicating that tulip subtilizes the three TgTCEB isozymes depending on the tissue.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Ryo Kuchida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Naoki Kitaoka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
15
|
Nomura T, Ueno A, Ogita S, Kato Y. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the root-specific isozyme. Biosci Biotechnol Biochem 2017; 81:1185-1193. [PMID: 28485211 DOI: 10.1080/09168451.2017.1295806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.
Collapse
Affiliation(s)
- Taiji Nomura
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| | - Ayaka Ueno
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| | - Shinjiro Ogita
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan.,b Faculty of Life and Environmental Sciences , Prefectural University of Hiroshima , Shobara, Hiroshima , Japan
| | - Yasuo Kato
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu, Toyama , Japan
| |
Collapse
|