1
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Varela SS, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025; 12:RP86931. [PMID: 39913180 PMCID: PMC11801798 DOI: 10.7554/elife.86931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Belinda S Hall
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Jane Newcombe
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Tom A Mendum
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Sonia Santana Varela
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Wei Q Shi
- Department of Chemistry, Ball State UniversityMuncieUnited States
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic LaboratoryCollege StationUnited States
| | | | - Rachel E Simmonds
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| |
Collapse
|
2
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
3
|
Siddiqui MF, Li J, Wang S, Zhang H, Qin C, Lu Y. FAM20A is a golgi-localized Type II transmembrane protein. Sci Rep 2024; 14:6518. [PMID: 38499693 PMCID: PMC10948845 DOI: 10.1038/s41598-024-57007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Family with sequence similarity 20, member A (FAM20A) is a pseudo-kinase in the secretory pathway and is essential for enamel formation in humans. Here we examine if FAM20A is a membrane-associated protein. We show that the full-length FAM20A can be purified from HEK293 cells transfected with a FAM20A-expresing construct. Further, it is only found in the membrane fraction, but not in the soluble fraction, of cell lysate. Consistently, it is not secreted out of the expressing cells. Moreover, it is co-localized with GM130, a cis-Golgi network marker, and membrane topology analysis indicates that it has its C-terminus oriented towards the lumen of the organelle. Our results support that FAM20A is a Type II transmembrane protein within the secretory compartments.
Collapse
Affiliation(s)
- Mohammad Faizan Siddiqui
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Jiahe Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Suzhen Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
4
|
Guasto A, Dubail J, Aguilera-Albesa S, Paganini C, Vanhulle C, Haouari W, Gorría-Redondo N, Aznal-Sainz E, Boddaert N, Planas-Serra L, Schlüter A, Verdura E, Bruneel A, Rossi A, Huber C, Pujol A, Cormier-Daire V. Biallelic variants in SLC35B2 cause a novel chondrodysplasia with hypomyelinating leukodystrophy. Brain 2022; 145:3711-3722. [PMID: 35325049 DOI: 10.1093/brain/awac110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfated proteoglycans are essential in skeletal and brain development. Recently, pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis have been identified in a range of chondrodysplasia associated with intellectual disability. Nevertheless, several patients remain with unidentified molecular basis. This study aimed to contribute to the deciphering of new molecular bases in patients with chondrodysplasia and neuro-developmental disease. Exome sequencing was performed to identify pathogenic variants in patients presenting with chondrodysplasia and intellectual disability. The pathogenic effects of the potentially causative variants were analyzed by functional studies. We identified homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2 in two patients with pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. By functional analyses, we showed that the variants affect SLC35B2 mRNA expression and protein subcellular localization leading to a functional impairment of the protein. Consistent with those results, we detected proteoglycan sulfation impairment in SLC35B2 patient fibroblasts and serum. Our data support that SLC35B2 functional impairment causes a novel syndromic chondrodysplasia with hypomyelinating leukodystrophy, most likely through a proteoglycan sulfation defect. This is the first time that SLC35B2 variants are associated with bone and brain development in human.
Collapse
Affiliation(s)
- Alessandra Guasto
- Paris Cité University, INSERM UMR1163, Imagine Institute, 75015 Paris, France
| | - Johanne Dubail
- Paris Cité University, INSERM UMR1163, Imagine Institute, 75015 Paris, France
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain.,Children's Medically Complex Diseases Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Catherine Vanhulle
- Service de Neuropédiatrie, pavillon Martainville, Hôpital Charles Nicolle, 76031, Rouen, France
| | - Walid Haouari
- INSERM UMR1193, Paris-Saclay University, F-92220 Châtenay-Malabry, France
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Elena Aznal-Sainz
- Children's Medically Complex Diseases Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Nathalie Boddaert
- Service d'Imagerie pédiatrique, AP-HP, Hôpital Necker-Enfants malades, F-75015 Paris, France
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, F-92220 Châtenay-Malabry, France.,AP-HP, Biochimie métabolique et cellulaire, Hôpital Bichat, F-75018, Paris, France
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Céline Huber
- Paris Cité University, INSERM UMR1163, Imagine Institute, 75015 Paris, France
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Valérie Cormier-Daire
- Paris Cité University, INSERM UMR1163, Imagine Institute, 75015 Paris, France.,Service de Génétique clinique, Centre de référence pour les maladies osseuses constitutionnelles, AP-HP, Hôpital Necker-Enfants malades, F-75015 Paris, France
| |
Collapse
|