1
|
Tsuboi S, Hoshino YT, Yamamoto-Tamura K, Uenishi H, Omae N, Morita T, Sameshima-Yamashita Y, Kitamoto H, Kishimoto-Mo AW. Enhanced biodegradable polyester film degradation in soil by sequential cooperation of yeast-derived esterase and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13941-13953. [PMID: 38265596 DOI: 10.1007/s11356-024-31994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineralization of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degraders and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns associated with biodegradable plastic persistence in agricultural and environmental contexts.
Collapse
Affiliation(s)
- Shun Tsuboi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuko Takada Hoshino
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Kimiko Yamamoto-Tamura
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Natsuki Omae
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuka Sameshima-Yamashita
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hiroko Kitamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Ayaka W Kishimoto-Mo
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| |
Collapse
|
2
|
Bhatt P, Pathak VM, Bagheri AR, Bilal M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 200:111762. [PMID: 34310963 DOI: 10.1016/j.envres.2021.111762] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Microplastic is a fragmented plastic part that emerges as a potential marine and terrestrial contaminant. The microplastic wastes in marine and soil environments cause severe problems in living systems. Microplastic wastes have been linked to various health problems, including reproductive harm and obesity, plus issues such as organ problems and developmental delays in children. Recycling plastic/microplastics from the environment is very low, so remediating these polymers after their utilization is of paramount concern. The microplastic causes severe toxic effects and contaminates the environment. Microplastic affects marine life, microorganism in soil, soil enzymes, plants system, and physicochemical properties. Ecotoxicology of the microplastic raised many questions about its use and development from the environment. Various physicochemical and microbial technologies have been developed for their remediation from the environment. The microplastic effects are linked with its concentration, size, and shape in contaminated environments. Microplastic is able to sorb the inorganic and organic contaminants and affect their fate into the contaminated sites. Microbial technology is considered safer for the remediation of the microplastics via its unique metabolic machinery. Bioplastic is regarded as safer and eco-friendly as compared to plastics. The review article explored an in-depth understanding of the microplastic, its fate, toxicity to the environment, and robust remediation strategies.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingman Modern Agriculture, Guangzhou, 510642, China.
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India; Department of Botany and Microbiology, Gurukul Kangri (Deemed to University), Haridwar, Uttarakhand, 249404, India
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
3
|
Tanaka T, Suzuki K, Ueda H, Sameshima-Yamashita Y, Kitamoto H. Ethanol treatment for sterilization, concentration, and stabilization of a biodegradable plastic-degrading enzyme from Pseudozyma antarctica culture supernatant. PLoS One 2021; 16:e0252811. [PMID: 34086819 PMCID: PMC8177473 DOI: 10.1371/journal.pone.0252811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Biodegradable plastics must be sufficiently stable to maintain functionality during use but need to be able to degrade rapidly after use. We previously reported that treatment with an enzyme named PaE, secreted by the basidiomycete yeast Pseudozyma antarctica can speed up this degradation. To facilitate the production of large quantities of PaE, here, we aimed to elucidate the optimal conditions of ethanol treatment for sterilization of the culture supernatant and for concentration and stabilization of PaE. The results showed that Pseudozyma antarctica completely lost its proliferating ability when incubated in ≥20% (v/v) ethanol. When the ethanol concentration was raised to 90% (v/v), PaE formed a precipitate; however, its activity was restored completely when the precipitate was dissolved in water. To reduce ethanol use, PaE was successfully concentrated and recovered by sequential ammonium sulfate precipitation and ethanol precipitation steps. Over 90% of the activity in the original culture supernatant was recovered and the specific activity was increased 3.4-fold. By preparing the enzyme solution at a final concentration of 20% (v/v) ethanol, about 60% of the initial activity was maintained at ambient temperature for over 6 months without growth of microbes. We conclude that ethanol treatment is effective for sterilization, concentration, and stabilization of PaE, and that concentrating PaE by sequential ammonium sulfate precipitation and ethanol precipitation substantially increases the PaE purity and decreases ethanol use.
Collapse
Affiliation(s)
- Takumi Tanaka
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| | - Ken Suzuki
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hirokazu Ueda
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| | - Yuka Sameshima-Yamashita
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hiroko Kitamoto
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Shakeri S, Khoshbasirat F, Maleki M. Rhodosporidium sp. DR37: a novel strain for production of squalene in optimized cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:95. [PMID: 33858494 PMCID: PMC8048366 DOI: 10.1186/s13068-021-01947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rhodosporidium strain, a well-known oleaginous yeast, has been widely used as a platform for lipid and carotenoid production. However, the production of squalene for application in lipid-based biofuels is not reported in this strain. Here, a new strain of Rhodosporidium sp. was isolated and identified, and its potential was investigated for production of squalene under various cultivation conditions. RESULTS In the present study, Rhodosporidium sp. DR37 was isolated from mangrove ecosystem and its potential for squalene production was assessed. When Rhodosporidium sp. DR37 was cultivated on modified YEPD medium (20 g/L glucose, 5 g/L peptone, 5 g/L YE, seawater (50% v/v), pH 7, 30 °C), 64 mg/L of squalene was produced. Also, squalene content was obtained as 13.9% of total lipid. Significantly, use of optimized medium (20 g/L sucrose, 5 g/L peptone, seawater (20% v/v), pH 7, 25 °C) allowed highest squalene accumulation (619 mg/L) and content (21.6% of total lipid) in Rhodosporidium sp. DR37. Moreover, kinetic parameters including maximum specific cell growth rate (μmax, h-1), specific lipid accumulation rate (qp, h-1), specific squalene accumulation rate (qsq, h-1) and specific sucrose consumption rate (qs, h-1) were determined in optimized medium as 0.092, 0.226, 0.036 and 0.010, respectively. CONCLUSIONS This study is the first report to employ marine oleaginous Rhodosporidium sp. DR37 for accumulation of squalene in optimized medium. These findings provide the potential of Rhodosporidium sp. DR37 for production of squalene as well as lipid and carotenoids for biofuel applications in large scale.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Farshad Khoshbasirat
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
5
|
Omae N, Sameshima-Yamashita Y, Ushimaru K, Koike H, Kitamoto H, Morita T. Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme. PLoS One 2021; 16:e0247462. [PMID: 33730094 PMCID: PMC7968665 DOI: 10.1371/journal.pone.0247462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), ΔPaPRO1 and ΔPaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The ΔPaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30°C. After terminating the agitation, the PaE activity in the XG8 ΔPaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25°C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.
Collapse
Affiliation(s)
- Natsuki Omae
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuka Sameshima-Yamashita
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazunori Ushimaru
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideaki Koike
- Bioprocess Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroko Kitamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tomotake Morita
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|