1
|
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Sci Rep 2022; 12:4805. [PMID: 35314715 PMCID: PMC8938411 DOI: 10.1038/s41598-022-08459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 μM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 μM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.
Collapse
|
2
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
4
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|