1
|
Wu Y, Liu Z, He Z, Yi J, Qiao X, Tan C, Xing Y, Zeng Y, Yang D, Yin J, Fan B, Zeng G. Cantharidin analogue alleviates dextran sulfate sodium-induced colitis in mice by inhibiting the activation of NF-κB signaling. Eur J Med Chem 2023; 260:115731. [PMID: 37643546 DOI: 10.1016/j.ejmech.2023.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Ulcerative colitis is a chronic inflammatory disease with a remitting-relapsing clinical course, it has evolved into a global burden given its high incidence worldwide. Cantharidin (CTD) derivatives are a class of compounds whose structures characterized with a 7-oxabicyclo [2.2.1]heptane core. Though potent cytotoxicity CTD and its derivatives showed, their clinical usage as anti-cancer drugs was limited by the toxicity in organs. In order to find new CTD analogues with good activity and lower toxicity, 21 CTD analogues with or without alkynyl substitution at C5 position of 7-oxabicyclo [2.2.1]heptane core were synthesized, some compounds showed better in vitro anti-inflammatory activity compared to CTD and norcantharidin (NCTD). Based on the structure-activity relationship results of in vitro experiment, analogue 3i was chosen for further study. Results from the acute toxicity in mice showed that 3i was hypotoxic with the single-dose MTD (maximum tolerated dose) for oral administration is over 1852 mg/kg, at least 35-fold lower than that of NCTD. Mechanism study indicated that 3i could potently inhibit TNF-α induced activation of NF-κB signaling by down-regulation the expression levels of phosphor- IKK, IκBα, and NF-κB p65, and alleviated dextran sulfate sodium-induced colitis in mice. This study indicated that CTD analogues with alkynyl substitution at C5 position of 7-oxabicyclo [2.2.1]heptane core is a kind of new compounds with good anti-inflammatory activity and lower toxicity in vivo, and might be used as therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Yihang Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Zixiu Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Zhenxiu He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Jumei Yi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Xingfang Qiao
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Chunbin Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Yajing Xing
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Yaobo Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Dajian Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| | - Junlin Yin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China.
| | - Guangzhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, China.
| |
Collapse
|
2
|
Dai YH, Chen GY, Tang CH, Huang WC, Yang JC, Wu YC. Drug Screening of Potential Multiple Target Inhibitors for Estrogen Receptor-α-positive Breast Cancer. In Vivo 2021; 35:761-777. [PMID: 33622869 DOI: 10.21873/invivo.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Estrogen receptor α (ERα) antagonist is the most common treatment for ERα-positive breast cancer. However, compensatory signaling contributes to resistance to ERα antagonists. Thus, to explore the potential agents for targeting compensatory signaling, we screened multiple target inhibitors for breast cancer treatment. MATERIALS AND METHODS We attempted to build a structure-based virtual screening model that can find potential compounds and assay the anticancer ability of these drugs by overall cell survival assay. The downstream compensatory phosphorylated signaling was measured by immunoblotting. RESULTS Hamamelitannin and glucocheirolin were hits for ERα, phosphoinositide 3-kinase (PI3K), and KRAS proto-oncogene, GTPase (KRAS), which were active against estrogen and epidermal growth factor-triggered proliferation. Additionally, we select aminopterin as a hit for ERα, PI3K, KRAS, and SRC proto-oncogene, non-receptor tyrosine kinase (SRC) with inhibitory activities toward AKT serine/threonine kinase 1 (AKT) and mitogen-activated protein kinase kinase (MEK) signaling. CONCLUSION Our structure-based virtual screening model selected hamamelitannin, glucocheirolin, aminopterin, and pemetrexed as compounds that may act as potential inhibitors for improving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Yun-Hao Dai
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.; .,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
3
|
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao F, Ma X, Sun X, Liang Q, Xu H, Wang Y, Yang Y. Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation and LEF1 translation. Int J Biol Sci 2021; 17:2504-2522. [PMID: 34326690 PMCID: PMC8315017 DOI: 10.7150/ijbs.51638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: As the leading primary bone cancer in adolescents and children, osteosarcoma patients with metastasis show a five-year-survival-rate of 20-30%, without improvement over the past 30 years. Wnt/β-catenin is important in promoting osteosarcoma development. DKK3 is a Wnt/β-catenin antagonist and predicted to have the specific binding site in 3′-UTR with miR-214-3p. Methods: miR-214-3p and DKK3 levels were investigated in human osteosarcoma tissues and cells by RT-qPCR; the prognostic importance of DKK3 level in osteosarcoma patients was determined with Log-rank test; direct binding between DKK3 with miR-214-3p was identified with targetscan; anti-osteosarcoma mechanism of cantharidin was investigated by miR-214-3p silence/over-expression with or without cantharidin treatment, and nuclear/cytoplasmic protein assay in osteosarcoma cells. Results: Down-regulated DKK3 indicated poor prognosis of osteosarcoma patients. Up-regulated miR-214-3p promoted proliferation and migration, while suppressed apoptosis of osteosarcoma cells by increasing β-catenin nuclear translocation and LEF1 translation via degradation of DKK3. Cantharidin suppressed viabilities, migration and invasion, while promoted cell cycle arrest and apoptosis in 143B and U-2 OS cells via down-regulating miR-214-3p to up-regulate DKK3, thus inhibited p-GSK-3β expression, β-catenin nuclear translocation and LEF1 translation. Meanwhile, cantharidin inhibited tumor growth in xenograft-bearing mice with 143B cell injection in tibia. Conclusion: miR-214-3p mediated Wnt/β-catenin/LEF1 signaling activation by targeting DKK3 to promote oncogenesis of osteosarcoma; cantharidin inhibited proliferation and metastasis of osteosarcoma cells via down-regulating miR-214-3p to up-regulate DKK3 and decrease β-catenin nuclear translocation, indicating that cantharidin may be a prospective candidate for osteosarcoma treatment by targeting miR-214-3p/DKK3/β-catenin signaling.
Collapse
Affiliation(s)
- Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hongfeng Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Wenlan Zhi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xiaobo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Fulai Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
4
|
Ling J, Chang A, Ye H, Zhao H, Zhuo X. TXNIP, CXCL1, and AREG as key genes in formaldehyde-induced head and neck carcinoma: an in silico analysis. Inhal Toxicol 2021; 33:113-120. [PMID: 33821754 DOI: 10.1080/08958378.2021.1908461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Reports have shown that formaldehyde (FA) can induce malignant transformation in cells via complicated mechanisms. Therefore, we aimed to investigate the possible molecules, pathways, and therapeutic agents for FA-induced head and neck cancer (HNC) by using bioinformatics approaches. METHODS High throughput data were analyzed to screen the differentially expressed genes (DEGs) between FA-treated nasal epithelium cells and controls. Then, the functions of the DEGs were annotated and the hub genes, as well as the key genes, were further screened out. Afterwards, potential drugs were predicted by using the connectivity map (CMAP) tool. RESULTS The information of a microarray-based dataset GSE21477 was extracted and analyzed. A total of 210 upregulated and 83 downregulated DEGs were generated, which might be enriched in various pathways, such as Cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, and Toll-like receptor signaling pathway. Among these DEGs, three hub genes including TXNIP, CXCL1, and AREG, were identified as the key genes because they might affect the prognosis of HNC. Finally, a major active ingredient of blister beetles, Cantharidin, was predicted to be one of the potential drugs reversing FA-induced malignant transformation in head and neck epithelium cells. CONCLUSION The present analysis gave us a novel insight into the mechanisms of FA-induced malignant transformation in head and neck epithelium cells, and predicted several small agents for the prevention or treatment of HNC. Future experiment studies are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives. Bioorg Med Chem 2021; 32:116012. [PMID: 33454654 DOI: 10.1016/j.bmc.2021.116012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Cantharidin is a potent natural protein phosphatase monoterpene anhydride inhibitor secreted by several species of blister beetle, with its demethylated anhydride analogue, (S)-palasonin, occurring as a constituent of the higher plant Butea frondosa. Cantharidin shows both potent protein phosphatase inhibitory and cancer cell cytotoxic activities, but possible preclinical development of this anhydride has been limited thus far by its toxicity. Thus, several synthetic derivatives of cantharidin have been prepared, of which some compounds exhibit improved antitumor potential and may have use as lead compounds. In the present review, the potential antitumor activity, structure-activity relationships, and development of cantharidin-based anticancer drug conjugates are summarized, with protein phosphatase-related and other types of mechanisms of action discussed. Protein phosphatases play a key role in the tumor microenvironment, and thus described herein is also the potential for developing new tumor microenvironment-targeted cancer chemotherapeutic agents, based on cantharidin and its naturally occurring analogues and synthetic derivatives.
Collapse
|
6
|
Naz F, Wu Y, Zhang N, Yang Z, Yu C. Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways. Molecules 2020; 25:E3279. [PMID: 32707651 PMCID: PMC7397086 DOI: 10.3390/molecules25143279] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a preeminent threat to the human race, causing millions of deaths each year on the Earth. Traditionally, natural compounds are deemed promising agents for cancer treatment. Cantharidin (CTD)-a terpenoid isolated from blister beetles-has been used extensively in traditional Chinese medicines for healing various maladies and cancer. CTD has been proven to be protein phosphatase 2A (PP2A) and heat shock transcription factor 1 (HSF-1) inhibitor, which can be potential targets for its anticancer activity. Albeit, it harbors some toxicities, its immense anticancer potential cannot be overlooked, as the cancer-specific delivery of CTD could help to rescue its lethal effects. Furthermore, several derivatives have been designed to weaken its toxicity. In light of extensive research, the antitumor activity of CTD is evident in both in vitro as well as in vivo cancer models. CTD has also proven efficacious in combination with chemotherapy and radiotherapy and it can also target some drug-resistant cancer cells. This mini-review endeavors to interpret and summarize recent information about CTD anticancer potential and underlying molecular mechanisms. The pertinent anticancer strength of CTD could be employed to develop an effective anticarcinogenic drug.
Collapse
Affiliation(s)
| | | | | | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| |
Collapse
|
7
|
Zhou L, Zou M, Zhu K, Ning S, Xia X. Development of 11-DGA-3- O-Gal-Modified Cantharidin Liposomes for Treatment of Hepatocellular Carcinoma. Molecules 2019; 24:molecules24173080. [PMID: 31450608 PMCID: PMC6749572 DOI: 10.3390/molecules24173080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Liver cancer is a common malignant tumor worldwide, and its morbidity and mortality increase each year. The disease has a short course and high mortality, making it a serious threat to human health. Purpose: The objective of this study was to create novel liver-targeting nanoliposomes to encapsulate cantharidin (CTD) as a potential treatment for hepatic carcinoma. Methods: 3-Galactosidase-30-stearyl deoxyglycyrrhetinic acid (11-DGA-3-O-Gal)-modified liposomes (11-DGA-3-O-Gal-CTD-lip) for the liver-targeted delivery of CTD were prepared via the film-dispersion method and characterized. In vitro analyses of the effects on cellular cytotoxicity, cell migration, cell cycle, and cell apoptosis were carried out and an in vivo pharmacokinetics study and tissue distribution analysis were performed. Results: Compared with unmodified liposomes (CTD-lip), 11-DGA-3-O-Gal-CTD-lip showed higher cytotoxicity and increased the inhibition of HepG2 cell migration, but they did not increase the apoptotic rate of cells. The inhibition mechanism of 11-DGA-3-O-Gal-CTD-lip on hepatocellular carcinoma was partly through cell cycle arrest at the S phase. Analysis of pharmacokinetic parameters indicated that 11-DGA-3-O-Gal-CTD-lip were eliminated more rapidly than CTD-lip. Regarding tissue distribution, the targeting efficiency of 11-DGA-3-O-Gal-CTD-lip to the liver was (41.15 ± 3.28)%, relative targeting efficiency was (1.53 ± 0.31)%, relative uptake rate was( 1.69 ± 0.37)%, and peak concentration ratio was (2.68 ± 0.12)%. Conclusion: 11-DGA-3-O-Gal-CTD-lip represent a promising nanocarrier for the liver-targeted delivery of antitumor drugs to treat hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
8
|
Ji XL, He M. Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma. Aging (Albany NY) 2019; 11:5848-5863. [PMID: 31422383 PMCID: PMC6710037 DOI: 10.18632/aging.102193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Overactive EGFR signaling is frequently seen in osteosarcoma cells, and represents a potential therapeutic target. However, feedback activation of STAT3 after EGFR inhibition is linked to treatment resistance, suggesting that combined EGFR/STAT3 inhibition may be needed to overcome this effect. Cantharidin and its analogues have shown strong anticancer effects, including STAT3 inhibition, in several tumor cells. Therefore, we investigated the effects of sodium cantharidate (SC), either as monotherapy and in combination with the EGFR inhibitor erlotinib, on STAT3 activation and osteosarcoma cell growth. Cell viability, migration, and apoptosis assays were performed in human MG63 and U2OS cells, and MG63 xenografts were generated in nude mice to verify the suppression of tumor growth in vivo. Additionally, western blotting and immunohistochemistry were used to verify the STAT3 and EGFR phosphorylation statuses in xenografts. We found that SC repressed cell viability and migration and induced apoptosis in vitro, while combined SC and erlotinib treatment enhanced osteosarcoma growth suppression by preventing feedback activation of STAT3. These data support further development of cantharidin-based combination therapies for metastatic and recurrent/refractory osteosarcoma.
Collapse
Affiliation(s)
- Xiang Lu Ji
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|