1
|
Xu X, Fu J, Yang G, Chen Z, Chen S, Yuan G. Dentin sialoprotein promotes endothelial differentiation of dental pulp stem cells through DSP aa34-50-endoglin-AKT1 axis. J Biol Chem 2025; 301:108380. [PMID: 40049415 DOI: 10.1016/j.jbc.2025.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
Dentin sialoprotein (DSP), a major dentin extracellular matrix noncollagenous protein, is well recognized as an important regulator for dentinogenesis. DSP as a secreted protein can interact with membrane receptors, activate intracellular signaling, and initiate the odontoblastic differentiation of dental papilla cells. In a recent study, we have demonstrated that DSP can induce the endothelial differentiation of dental pulp stem cells (DPSCs), a type of tooth pulp-derived multipotent stem cells, dependent on membrane receptor endoglin (ENG). However, the intimate mechanisms by which DSP-ENG association facilitates the endothelial differentiation of DPSCs remain enigmatic. Here, we find that the amino acid (aa) residues 34-50 of DSP (DSPaa34-50) is responsible for its association with ENG using a series of co-immunoprecipitation assays. Immunofluorescent staining and in situ proximity ligation assay demonstrate that overexpressed ENG in human embryonic kidney 293T cells shows codistribution and proximity ligation assay signals to the supplemented DSPaa34-50 protein but not to DSP without aa34-50 (DSPΔ34-50) on cell surfaces. Moreover, the zona pellucida domain of ENG mediates its association with DSPaa34-50. Further experiments indicate that DSPaa34-50 exhibits equivalent effects to the full-length DSP on the migration and endothelial differentiation of DPSCs dependent on ENG but DSPΔ34-50 does not. Mechanistically, DSPaa34-50 activates AKT1 and triggers the expression of blood vessel development-related genes in DPSCs. Multiple experiments demonstrate that AKT1 inhibition suppresses the DSPaa34-50-induced migration and endothelial differentiation of DPSCs. Thus, AKT1 mediates the cellular and molecular functions of DSPaa34-50-ENG association. Collectively, these findings identify that DSP promotes the endothelial differentiation of DPSCs through the DSPaa34-50-ENG-AKT1 signaling axis.
Collapse
Affiliation(s)
- Ximin Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Jing Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Chen
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Basic M, Thiyagarajah K, Glitscher M, Schollmeier A, Wu Q, Görgülü E, Lembeck P, Sonnenberg J, Dietz J, Finkelmeier F, Praktiknjo M, Trebicka J, Zeuzem S, Sarrazin C, Hildt E, Peiffer KH. Impaired HBsAg release and antiproliferative/antioxidant cell regulation by HBeAg-negative patient isolates reflects an evolutionary process. Liver Int 2024; 44:2773-2792. [PMID: 39078064 DOI: 10.1111/liv.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The hepatitis B e antigen (HBeAg)-negative infection Phase 3 is characterized by no or minimal signs of hepatic inflammation and the absence of hepatic fibrosis. However, underlying molecular mechanisms leading to this benign phenotype are poorly understood. METHODS Genotype A, B and D HBeAg-negative patient isolates with precore mutation G1896A from Phase 3 were analysed in comparison with respective HBeAg-positive rescue mutant and HBeAg-positive wild-type reference genomes regarding differences in viral replication, morphogenesis, infectivity and impact on NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE)-dependent gene expression and cellular kinome. RESULTS In comparison with reference genomes, the patient isolates are characterized by a lower intra- and extracellular hepatitis B surface antigen (HBsAg)-amount, and HBsAg-retention in the endoplasmic reticulum. Rescue of HBeAg expression increased HBsAg-amount but not its release. Expression of the isolated genomes is associated with a higher Nrf2/ARE-dependent gene expression as compared to reference genomes independent of HBeAg expression. Kinome analyses revealed a decreased activity of receptors involved in regulation of proliferative pathways for all patient isolates compared to the reference genomes. No specific conserved mutations could be found between all genomes from Phase 3. CONCLUSIONS HBeAg-negative genomes from Phase 3 exhibit distinct molecular characteristics leading to lower HBsAg synthesis and release, enhanced oxidative stress protection and decreased activity of key kinases, triggering an antiproliferative stage, which might contribute to the lower probability of hepatocellular carcinoma. The observed differences cannot be associated with loss of HBeAg or specific mutations common to all analysed isolates, indicating the phenotype of Phase 3 derived genomes to be the result of a multifactorial process likely reflecting a conserved natural selection process.
Collapse
Affiliation(s)
- Michael Basic
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Keerthihan Thiyagarajah
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Mirco Glitscher
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Anja Schollmeier
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Qingyan Wu
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Esra Görgülü
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Pia Lembeck
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jannik Sonnenberg
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Julia Dietz
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Gastroenterology, St. Josefs Hospital, Wiesbaden, Germany
| | - Eberhard Hildt
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Kai-Henrik Peiffer
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Zhao Y, Liu R, Li M, Liu P. The spleen tyrosine kinase (SYK): A crucial therapeutic target for diverse liver diseases. Heliyon 2022; 8:e12130. [PMID: 36568669 PMCID: PMC9768320 DOI: 10.1016/j.heliyon.2022.e12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an enigmatic protein tyrosine kinase, and involved in signal transduction related with lots of cellular processes. It's highly expressed in the cells of hematopoietic origin and acts as an important therapeutic target in the treatment of autoimmune diseases and allergic disorders. In recent years, more and more evidences indicate that SYK is expressed in non-hematopoietic cells and effectively regulates various non-immune biological responses as well. In this review, we mainly summary the role of SYK in different liver diseases. Robust SYK expression has been discovered in hepatocytes, hepatic stellate cells, as well as Kupffer cells, which participates in the regulation of numerous signal transduction in various liver diseases (e.g. hepatitis, liver fibrosis and hepatocellular carcinoma). In addition, the blockage of SYK activity using small molecule modulators is considered as a significant therapeutic strategy against liver diseases, and both hepatic SYK and non-hepatic SYK could become highly promising therapeutic targets. Totally, even though some critical points about the significance of SYK in liver diseases treatment still need further elaboration, more reliable biotechnical or pharmacological therapy modes will be established based on the better understanding of the relationship between SYK and liver diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China,Corresponding author.
| |
Collapse
|
4
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Wu W, Wang L, Li S. Hox transcript antisense RNA knockdown inhibits osteosarcoma progression by regulating the phosphoinositide 3-kinase/AKT pathway through the microRNA miR-6888-3p/spleen tyrosine kinase axis. Bioengineered 2022; 13:9397-9410. [PMID: 35435107 PMCID: PMC9161905 DOI: 10.1080/21655979.2022.2059614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is thought to be a key regulator of the occurrence and development of osteosarcoma (OS). The expression of HOTAIR, microRNA miR-6888-3p, spleen tyrosine kinase (SYK), and phosphoinositide 3-kinase/AKT (PI3K/AKT) pathway-related proteins in OS was detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting. Changes in the proliferation and migration of OS cells were detected by Cell Counting Kit-8 (CCK-8) and transwell assays after the knockdown of HOTAIR, miR-6888-3p, or SYK. Luciferase assays, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to detect the relationship between miR-6888-3p and HOTAIR or SYK. We found that HOTAIR and SYK were highly expressed in OS, whereas miR-6888-3p expression was low. In addition, downregulation of HOTAIR or SYK significantly inhibited the growth and migration of OS cells and the PI3K/AKT pathway, both in vitro and in vivo. Additionally, downregulation of miR-6888-3p promoted the proliferation and migration of OS cells and activated the PI3K/AKT pathway. Mechanistically, these results suggest that the HOTAIR sponge, miR-6888-3p, regulates SYK expression. To summarize, HOTAIR regulates SYK by acting on miR-6888-3p, thereby promoting the proliferation and migration of OS cells.
Collapse
Affiliation(s)
- Wei Wu
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China.,Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Linxiu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Sen Li
- Department of Spinal Surgery, Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|