1
|
Gattani V, Dawre S. Development of favipiravir loaded PLGA nanoparticles entrapped in in-situ gel for treatment of Covid-19 via nasal route. J Drug Deliv Sci Technol 2023; 79:104082. [PMID: 36530548 PMCID: PMC9745979 DOI: 10.1016/j.jddst.2022.104082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In 2019 the emergence of SARS-COV-2 caused pandemic situation worldwide and claimed ∼6.4 M lives (WHO 2022). Favipiravir (FAV) is recommended as a therapy for Covid-19 which belongs to BCS class III with a short half-life of 2-5.5h. Thus, the objective of current study was the development of favipiravir loaded PLGA nanoparticles (NPs) by box-behnken design. Moreover, these NPs were entrapped in thermosensitive gel to increase the permeation through nasal route. The nanoparticles exhibit particle size of 175.6 ± 2 nm with >70 ± 0.5 %EE. NPs showed PDI (0.130) and zeta potential (-17.1 mV) suggesting homogeneity and stability of NPs. DSC, XRD, and FTIR studies concluded absence of any interaction of FAV and the excipients. SEM and AFM studies demonstrated spherical morphology of NPs with smooth surface. The NPs entrapped in-situ gel showed clarity and pH 5.5-6.1. The gelation temperature of NPs dispersed in-situ gel was found in the range of 35 °C -37 °C. The gel has viscosity in range of 34592-4568 cps. The texture analysis profile of gel showed good gelling properties. Dissolution study suggested a sustained release of FAV from NPs (24h) and NPs dispersed gel (32h) as compared to FAV solution (4h). The gel showed good mucoadhesion properties (9373.9 dyne/cm2). Ex-vivo permeation through nasal mucosa of goat elucidated NPs dispersed gel demonstrated significantly higher permeation than solution and NPs. Therefore, it would be a prospective formulation to combat Covid-19 infection with high patient compliance.
Collapse
Affiliation(s)
- Vaishnavi Gattani
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Laxmi Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| |
Collapse
|
2
|
Patil D, Nangare S, Patil G, Nerkar K, Patil G. Development of thiolated polyethylene glycol-poly (lactic-co-glycolic acid) co-polymeric nanoparticles for intranasal delivery of quetiapine: in vitro– ex vivo characterization. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dilip Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sopan Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Gaurav Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Kalpesh Nerkar
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ganesh Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
3
|
Kumbhar PS, Nadaf S, Manjappa AS, Jha NK, Shinde SS, Chopade SS, Shete AS, Disouza JI, Sambamoorthy U, Kumar SA. D-ɑ-tocopheryl polyethylene glycol succinate: A review of multifarious applications in nanomedicines. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Shankar J, K.M G, Wilson B. Potential applications of nanomedicine for treating Parkinson's disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Silva S, Almeida AJ, Vale N. Importance of Nanoparticles for the Delivery of Antiparkinsonian Drugs. Pharmaceutics 2021; 13:508. [PMID: 33917696 PMCID: PMC8068059 DOI: 10.3390/pharmaceutics13040508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
Parkinson's disease (PD) affects around ten million people worldwide and is considered the second most prevalent neurodegenerative disease after Alzheimer's disease. In addition, there is a higher risk incidence in the elderly population. The main PD hallmarks include the loss of dopaminergic neurons and the development of Lewy bodies. Unfortunately, motor symptoms only start to appear when around 50-70% of dopaminergic neurons have already been lost. This particularly poses a huge challenge for early diagnosis and therapeutic effectiveness. Actually, pharmaceutical therapy is able to relief motor symptoms, but as the disease progresses motor complications and severe side-effects start to appear. In this review, we explore the research conducted so far in order to repurpose drugs for PD with the use of nanodelivery systems, alternative administration routes, and nanotheranostics. Overall, studies have demonstrated great potential for these nanosystems to target the brain, improve drug pharmacokinetic profile, and decrease side-effects.
Collapse
Affiliation(s)
- Sara Silva
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
|
9
|
Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int J Pharm 2020; 589:119776. [PMID: 32818538 DOI: 10.1016/j.ijpharm.2020.119776] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Nose-to-brain delivery is an attractive route for direct drug delivery to the central nervous system (CNS), avoiding hepatic first-pass metabolism and solving blood-brain barrier passage issues. Therefore, the aim of the present study was the development of PLGA and PLGA/chitosan (chit) nanoparticles (NPs) with mucoadhesive properties, able to encapsulate ropinirole hydrochloride (RH), an anti-Parkinsonian dopaminergic agonist, and suitable to promote RH delivery across the nasal mucosa. NPs produced by nanoprecipitation showed spherical shape and a mean average size of 98.8 nm and 468.0 nm (PLGA and PLGA/chit, respectively). RH loaded PLGA/chit NPs showed a complete release of the drug in simulated nasal electrolyte solution (SNES) over the period of 24 h and increased the permeation of RH through sheep nasal mucosa by 3.22-fold in comparison to PLGA NPs. None of RH loaded NPs induced hemolysis in whole blood or the production of reactive oxygen species (ROS) in Raw 264.7 cells. On their turn, PLGA/chit NPs decreased cell viability of Raw 264.7 cells and Peripheral Blood Mononuclear Cells (PBMCs) in a concentration-dependent manner. These results revealed that, particularly PLGA/chit NPs, could be a valuable carrier for the delivery of RH to the CNS, opening a new path for Parkinson's disease therapy.
Collapse
|
10
|
Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv 2019; 10:683-696. [PMID: 31744396 DOI: 10.4155/tde-2019-0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: The manuscript describes the performance of nanoparticles loaded with antidepressant drug for nose-to-brain drug delivery. Materials & methods: Poly-lactic-co-glycolic acid-loaded nanoparticles of agomelatine were prepared by nanoprecipitation method using poloxamer 407 as stabilizer. The process parameters were optimized using factorial design. Results: The drug-loaded nanoparticles having low particle size (<200 nm) with narrow size distribution and required zeta potential (-22.7 mV) to avoid aggregation showed sustained release profile and were found to have higher permeability as observed from ex vivo studies when compared with plain drug suspension. Histopathology test showed that the optimized formulation was free from nasal toxicity on the goat nasal mucosa. Pharmacodynamic study showed significant reduction in immobility time in rats treated with the formulation which indicated antidepressant activity of the formulation. Conclusion: The prepared agomelatin-loaded poly-lactic-co-glycolic acid nanoparticles showed prominent antidepressant activity by nose-to-brain delivery as observed from various studies.
Collapse
|
12
|
Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Rosch JG, Brown AL, DuRoss AN, DuRoss EL, Sahay G, Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. NANOSCALE RESEARCH LETTERS 2018; 13:350. [PMID: 30392055 PMCID: PMC6215536 DOI: 10.1186/s11671-018-2748-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 05/21/2023]
Abstract
Crosslinked-biopolymer nanoparticles provide a convenient platform for therapeutic encapsulation and delivery. Here, we present a robust inverse-micelle process to load water-soluble drugs into a calcium-crosslinked alginate matrix. The utility of the resulting nanoalginate (NALG) carriers was assessed by a doxorubicin (DOX) formulation (NALG-DOX) and evaluating its potency on breast cancer cells (4T1). This facile synthesis process produced doxorubicin-containing particles of ~ 83 nm by hydrodynamic size and zeta potential ~ 7.2 mV. The cyclohexane/dodecylamine microemulsion yielded uniform and spherical nanoparticles as observed by electron microscopy. The uptake of the drug from the NALG-DOX formulation in 4T1 cells was observed by fluorescence microscopy employing doxorubicin's inherent fluorescence. Therapeutic efficacy of the NALG-DOX against 4T1 cells was demonstrated qualitatively through a LIVE/DEAD fluorescence assay and quantitatively via cell viability assay (Alamar Blue). In addition, IC50 values were determined, with encapsulated doxorubicin having a slightly higher value. No toxicity of the empty NALG carrier was observed. Overall, these results demonstrate the utility of this synthesis process for encapsulation of hydrophilic therapeutics and NALG to function as a drug carrier.
Collapse
Affiliation(s)
- Justin G. Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Anna L. Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Allison N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Erin L. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201 USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
14
|
Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. J Control Release 2016; 240:251-266. [DOI: 10.1016/j.jconrel.2015.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
|
15
|
Hawthorne GH, Bernuci MP, Bortolanza M, Tumas V, Issy AC, Del-Bel E. Nanomedicine to Overcome Current Parkinson's Treatment Liabilities: A Systematic Review. Neurotox Res 2016; 30:715-729. [PMID: 27581037 DOI: 10.1007/s12640-016-9663-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Abstract
Nanoparticles might be produced and manipulated to present a large spectrum of properties. The physicochemical features of the engineered nanomaterials confer to them different features, including the ability to cross the blood-brain barrier. The main objective of this review is to present the state-of-art research in nano manipulation concerning Parkinson's disease (PD). In the past few years, the association of drugs with nanoparticles solidly improved treatment outcomes. We systematically reviewed 28 studies, describing their potential contributions regarding the role of nanomedicine to increase the efficacy of known pharmacological strategies for PD treatment. Data from animal models resulted in the (i) improvement of pharmacological properties, (ii) more stable drug concentrations, (iii) longer half-live and (iv) attenuation of pharmacological adverse effects. As this approach is recent, with many of the described works being published less than 5 years ago, the expectancy is that this knowledge gives support to an improvement in the current clinical methods to the management of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Marcelo Picinin Bernuci
- Department of Health Promotion, University Center of Maringá (UniCesumar), Cesumar Institute of Science Technology and Innovation (ICETI), Maringa, Paraná, Brazil.
| | - Mariza Bortolanza
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ana Carolina Issy
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | - Elaine Del-Bel
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Patil GB, Surana SJ. Bio-fabrication and statistical optimization of polysorbate 80 coated chitosan nanoparticles of tapentadol hydrochloride for central antinociceptive effect: in vitro–in vivo studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:505-514. [DOI: 10.3109/21691401.2016.1163713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ganesh B. Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), India
| | - Sanjay J. Surana
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), India
| |
Collapse
|
17
|
Bao LL, Huang HQ, Zhao J, Nakashima K, Gong YK. Preparation and characterization of zwitterionic phospholipid polymer-coated poly(lactic acid) nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1703-16. [DOI: 10.1080/09205063.2014.952993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|