1
|
Matos RJR, Silva JC, Soares PIP, Borges JP. Polyvinylpyrrolidone Nanofibers Incorporating Mesoporous Bioactive Glass for Bone Tissue Engineering. Biomimetics (Basel) 2023; 8:biomimetics8020206. [PMID: 37218792 DOI: 10.3390/biomimetics8020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Composite biomaterials that combine osteoconductive and osteoinductive properties are a promising approach for bone tissue engineering (BTE) since they stimulate osteogenesis while mimicking extracellular matrix (ECM) morphology. In this context, the aim of the present research was to produce polyvinylpyrrolidone (PVP) nanofibers containing mesoporous bioactive glass (MBG) 80S15 nanoparticles. These composite materials were produced by the electrospinning technique. Design of experiments (DOE) was used to estimate the optimal electrospinning parameters to reduce average fiber diameter. The polymeric matrices were thermally crosslinked under different conditions, and the fibers' morphology was studied using scanning electron microscopy (SEM). Evaluation of the mechanical properties of nanofibrous mats revealed a dependence on thermal crosslinking parameters and on the presence of MBG 80S15 particles inside the polymeric fibers. Degradation tests indicated that the presence of MBG led to a faster degradation of nanofibrous mats and to a higher swelling capacity. The assessment of in vitro bioactivity in simulated body fluid (SBF) was performed using MBG pellets and PVP/MBG (1:1) composites to assess if the bioactive properties of MBG 80S15 were kept when it was incorporated into PVP nanofibers. FTIR and XRD analysis along with SEM-EDS results indicated that a hydroxy-carbonate apatite (HCA) layer formed on the surface of MBG pellets and nanofibrous webs after soaking in SBF over different time periods. In general, the materials revealed no cytotoxic effects on the Saos-2 cell line. The overall results for the materials produced show the potential of the composites to be used in BTE.
Collapse
Affiliation(s)
- Ricardo J R Matos
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jorge C Silva
- i3N/CENIMAT, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2799. [PMID: 37049093 PMCID: PMC10095723 DOI: 10.3390/ma16072799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz 5165687386, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
3
|
Keshavarz S, Okoro OV, Hamidi M, Derakhshankhah H, Azizi M, Nabavi SM, Gholizadeh S, Amini SM, Shavandi A, Luque R, Samadian H. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coord Chem Rev 2022; 472:214770. [PMID: 37600158 PMCID: PMC10438895 DOI: 10.1016/j.ccr.2022.214770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Engineered nanostructures are materials with promising properties, enabled by precise design and fabrication, as well as size-dependent effects. Biomedical applications of nanomaterials in disease-specific prevention, diagnosis, treatment, and recovery monitoring require precise, specific, and sophisticated approaches to yield effective and long-lasting favorable outcomes for patients. In this regard, carbon nanofibers (CNFs) have been indentified due to their interesting properties, such as good mechanical strength, high electrical conductivity, and desirable morphological features. Broadly speaking, CNFs can be categorized as vapor-grown carbon nanofibers (VGCNFs) and carbonized CNFs (e.g., electrospun CNFs), which have distinct microstructure, morphologies, and physicochemical properties. In addition to their physicochemical properties, VGCNFs and electrospun CNFs have distinct performances in biomedicine and have their own pros and cons. Indeed, several review papers in the literature have summarized and discussed the different types of CNFs and their performances in the industrial, energy, and composites areas. Crucially however, there is room for a comprehensive review paper dealing with CNFs from a biomedical point of view. The present work therefore, explored various types of CNFs, their fabrication and surface modification methods, and their applications in the different branches of biomedical engineering.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Masoud Hamidi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azizi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (BIOTEC), 82100, Benevento, Italy
- Nutringredientes Research Group, Federal Institute of Education, Science and Technology (IFCE), Brazil
| | - Shayan Gholizadeh
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Rafael Luque
- Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
5
|
Taale M, Schütt F, Zheng K, Mishra YK, Boccaccini AR, Adelung R, Selhuber-Unkel C. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43874-43886. [PMID: 30395704 PMCID: PMC6302313 DOI: 10.1021/acsami.8b13631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
6
|
Cheng D, Liu D, Tang T, Zhang X, Jia X, Cai Q, Yang X. Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles. Biomed Mater 2017; 12:025019. [DOI: 10.1088/1748-605x/aa6521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Samadian H, Zakariaee SS, Adabi M, Mobasheri H, Azami M, Faridi-Majidi R. Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks. RSC Adv 2016. [DOI: 10.1039/c6ra21596c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to predict the effects of different parameters on the conductivity of mineralized PAN-based carbon nanofibers by the artificial neural network (ANN) method.
Collapse
Affiliation(s)
- Hadi Samadian
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Seyed Salman Zakariaee
- Department of Medical Physics
- School of Medicine
- Ilam University of Medical Sciences
- Ilam
- Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Mahmoud Azami
- Department of Tissue Engineering
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
8
|
Cheng D, Xie R, Tang T, Jia X, Cai Q, Yang X. Regulating micro-structure and biomineralization of electrospun PVP-based hybridized carbon nanofibers containing bioglass nanoparticles via aging time. RSC Adv 2016. [DOI: 10.1039/c5ra23337b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Morphological and micro-structural evolution of BG components in PVP-based CNF/BG composite with aging time.
Collapse
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Rongrong Xie
- Changzhou Institute of Advanced Materials
- Beijing University of Chemical Technology
- Jiangsu 213164
- P. R. China
| | - Tianhong Tang
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
9
|
Cheng D, Ren Z, Guo L, Zhang C, Jia X, Cai Q, Yang X. Thermal-based regulation on biomineralization and biological properties of bioglass nanoparticles decorated PAN-based carbon nanofibers. RSC Adv 2016. [DOI: 10.1039/c5ra19740f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism and model for biomineralization behavior and cell culture of CNF/BG sintered at various temperatures.
Collapse
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhiwei Ren
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Lijuan Guo
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Cuihua Zhang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
10
|
Jia X, Tang T, Cheng D, Zhang C, Zhang R, Cai Q, Yang X. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time. Colloids Surf B Biointerfaces 2015; 136:585-93. [DOI: 10.1016/j.colsurfb.2015.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
|
11
|
Szparaga G, Król P, Brzezińska M, Rabiej S, Boguń M. Nanocomposite Precursor Polyacrylonitrile Fibers for Medical Applications. ADVANCES IN POLYMER TECHNOLOGY 2015. [DOI: 10.1002/adv.21542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Grzegorz Szparaga
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Paulina Król
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Magdalena Brzezińska
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Stanisław Rabiej
- Department of Materials and Environmental Sciences; University of Bielsko-Biala; 43-309 Bielsko-Biala Poland
| | - Maciej Boguń
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| |
Collapse
|
12
|
Fraczek-Szczypta A, Rabiej S, Szparaga G, Pabjanczyk-Wlazlo E, Krol P, Brzezinska M, Blazewicz S, Bogun M. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:336-45. [PMID: 25842143 DOI: 10.1016/j.msec.2015.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/12/2015] [Accepted: 03/18/2015] [Indexed: 11/16/2022]
Abstract
The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces.
Collapse
Affiliation(s)
- A Fraczek-Szczypta
- AGH University of Science and Technology, Department of Biomaterials, 30 Mickiewicza Street, 30-059 Krakow, Poland
| | - S Rabiej
- University of Bielsko-Biala, Department of Physics and Structural Research, 2 Willowa Street, 43-309 Bielsko-Biala, Poland
| | - G Szparaga
- Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| | - E Pabjanczyk-Wlazlo
- Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| | - P Krol
- Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| | - M Brzezinska
- Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| | - S Blazewicz
- AGH University of Science and Technology, Department of Biomaterials, 30 Mickiewicza Street, 30-059 Krakow, Poland
| | - M Bogun
- Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, 116 Zeromskiego Street, 90-924 Lodz, Poland.
| |
Collapse
|
13
|
Zhang C, Cheng D, Tang T, Jia X, Cai Q, Yang X. Nanoporous structured carbon nanofiber–bioactive glass composites for skeletal tissue regeneration. J Mater Chem B 2015; 3:5300-5309. [DOI: 10.1039/c5tb00921a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioactive glass (BG) decorated nanoporous composite carbon nanofibers (PCNF–BG) were prepared for the purpose of obtaining effective substrates for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Cuihua Zhang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Tianhong Tang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
14
|
|