1
|
Tibatan MA, Katana D, Yin CM. The emerging role of nanoscaffolds in chronic diabetic wound healing: a new horizon for advanced therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-32. [PMID: 39291361 DOI: 10.1080/09205063.2024.2402148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Non-healing or chronic wounds in extremities that lead to amputations in patients with Type II diabetes (hyperglycemia) are among the most serious and common health problems in the modern world. Over the past decade, more efficient solutions for diabetic ulcers have been developed. Nanofibers and/or composite materials capable of drug delivery, moisture control, and antibacterial effectiveness are increasingly utilized in the formulation of wound dressings, with a particular focus on the biofunctionalization of polymeric and hydrogel materials. Natural products, including plant extracts, honey, antibacterial agents, nanozymes, and metal nanoparticles, are now commonly and effectively implemented to enhance the functionality of wound dressings. Due to the complicated and dysfunctional physiological structure of the chronic wound sites in the extremities of diabetic patients, formulated nanoscaffold or hydrogel components are becoming more intricate and versatile. This study aimed to investigate the development of wound dressing materials over the years while demonstrating their progressively enhanced complexity in effectively targeting, treating, and managing chronic wounds. The mechanisms of action and bio-functionality of wound dressing technologies were elucidated based on findings from 290 studies conducted over the last decade. A notable observation that emerged from these studies is the evolution of wound dressing development technology, which has led to significant advancements in the operational range of smart systems. These include, but are not limited to, self-healing, self-oxygenation, and adaptable mimicry of human tissue.
Collapse
Affiliation(s)
| | - Dzana Katana
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Casey M Yin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
IŞIK C. An Alternative Approach to Plastic Recycling: Fabrication and Characterization of rPET/CA Nanofiber Carriers to Enhance Porcine Pancreatic Lipase Stability Properties. ACS OMEGA 2024; 9:31313-31327. [PMID: 39072091 PMCID: PMC11270705 DOI: 10.1021/acsomega.3c07227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 07/30/2024]
Abstract
In response to the increasing demand for sustainable technologies, this study presents a novel approach to plastic recycling. In this study, a method was presented to produce nanofiber carriers by electrospinning using recycled poly(ethylene terephthalate) (rPET) obtained from wastewater bottles and cellulose acetate (CA). These carriers serve as a platform for immobilized porcine pancreatic lipase (PPL), aiming to enhance its stability. The production parameters for the rPET/CA nanofibers were found to be an rPET concentration of 15% (v/v), a CA concentration of 6% (v/v), an electrical voltage of 13 kV, a needle-collector distance of 18 cm, and an injection speed of 0.1 mL/h. The nanofiber structure and morphology were assessed by using attenuated total reflectance-infrared Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) analyses. Then, PPL was immobilized onto the nanofibers through adsorption and cross-linking methods. The optimum temperature for free PPL was determined to be 30 °C, and the optimum temperature for PPL immobilized on rPET/CA was determined to be 40 °C. It was observed that, especially under acidic conditions, after the immobilization process, PPL immobilized rPET/CA nanofibers became more resistant to pH changes than free PLL. Furthermore, the immobilized PPL exhibited improved pH stability, reusability, and thermal stability compared to its free counterpart. This innovative approach not only contributes to plastic waste reduction but also opens new avenues for enzyme immobilization with potential applications in biocatalysis and wastewater treatment.
Collapse
Affiliation(s)
- Ceyhun IŞIK
- Faculty of Science, Chemistry
Department, Muğla Sıtkı
Koçman University, Muğla 48000, Türkiye
| |
Collapse
|
3
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
4
|
Alam MR, Shahid MA, Alimuzzaman S, Hasan MM, Hoque ME. Electrospun bio-nano hybrid scaffold from collagen, Nigella sativa, and chitosan for skin tissue engineering application. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231162365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The new sophisticated tissue engineering focused on producing nanocomposite with different morphologies for rapid tissue regeneration. In this case, utilizing nanotechnology with the incorporation of bio-based materials have achieved the interest of researchers. This research aims at developing hybrid bio-nano scaffold with collagen (Col), Nigella sativa ( Ns), and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Field emission electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), moisture management properties, tensile properties, antibacterial activity, and wound healing assessment of the fabricated hybrid bio-nano scaffolds were employed to investigate the different properties of hybrid bio-nano scaffolds. The results exhibit that the sample with Col (50%) and Ns (25%), Cs (25%) has good fiber formation with a mean diameter of 381 ± 22 nm. This bio-nano scaffold has a porosity of 78 ± 6.9% and a fast absorbing-slow drying nature for providing a moist environment. The antibacterial zones of inhibition (ZOI) against Staphylococcus aureus and Escherichia coli were 10 ± 1.3 and 8 ± 0.9 mm respectively, and appeared to be adequate to inhibit bacterial action. The wound healing assessment states that 84 ± 3.8% of wound closure occurs in just 10 days, which is quicker (1.5 times) than the duration of a commercial bandage. All of the findings suggest that the bio-nano scaffold could be useful for skin tissue engineering.
Collapse
|
5
|
PDDA/Honey Antibacterial Nanofiber Composites for Diabetic Wound-Healing: Preparation, Characterization, and In Vivo Studies. Gels 2023; 9:gels9030173. [PMID: 36975623 PMCID: PMC10047982 DOI: 10.3390/gels9030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In this paper, Poly (diallyldimethylammonium chloride) (PDDA)/honey nanofiber wound dressing composites were prepared and their effects on the diabetic wound-healing was evaluated using in vivo experiments. The release of effective compounds and the solubility of nanofibers were controlled through the crosslinking process by glutaraldehyde. The crosslinked nanofibers (crosslinking time was 3 h) showed an absorption capacity at a maximum value of 989.54%. Interestingly, the resultant composites were able to prevent 99.9% of Staphylococcus aureus and Escherichia coli bacteria. Furthermore, effective compounds were continuously released from nanofibers for up to 125 h. In vivo evaluation indicated that the use of PDDA/honey (40/60) significantly enhanced wound-healing. On the day 14th, the average healing rate for samples covered by conventional gauze bandage, PDDA, PDDA/honey (50/50), and PDDA/honey (40/60) were 46.8 ± 0.2, 59.4 ± 0.1, 81.7 ± 0.3, and 94.3 ± 0.2, respectively. The prepared nanofibers accelerated the wound-healing process and reduced the acute and chronic inflammation. Hence, our PDDA/honey wound dressing composites open up new future treatment options for diabetic wound diseases.
Collapse
|
6
|
Tomić SL, Vuković JS, Babić Radić MM, Filipović VV, Živanović DP, Nikolić MM, Nikodinovic-Runic J. Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. Polymers (Basel) 2023; 15:polym15030589. [PMID: 36771889 PMCID: PMC9920545 DOI: 10.3390/polym15030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Scaffolding biomaterials are gaining great importance due to their beneficial properties for medical purposes. Targeted biomaterial engineering strategies through the synergy of different material types can be applied to design hybrid scaffolding biomaterials with advantageous properties for biomedical applications. In our research, a novel combination of the bioactive agent Manuka honey (MHo) with 2-hydroxyethyl methacrylate/gelatin (HG) hydrogel scaffolds was created as an efficient bioactive platform for biomedical applications. The effects of Manuka honey content on structural characteristics, porosity, swelling performance, in vitro degradation, and in vitro biocompatibility (fibroblast and keratinocyte cell lines) of hybrid hydrogel scaffolds were studied using Fourier transform infrared spectroscopy, the gravimetric method, and in vitro MTT biocompatibility assays. The engineered hybrid hydrogel scaffolds show advantageous properties, including porosity in the range of 71.25% to 90.09%, specific pH- and temperature-dependent swelling performance, and convenient absorption capacity. In vitro degradation studies showed scaffold degradability ranging from 6.27% to 27.18% for four weeks. In vitro biocompatibility assays on healthy human fibroblast (MRC5 cells) and keratinocyte (HaCaT cells) cell lines by MTT tests showed that cell viability depends on the Manuka honey content loaded in the HG hydrogel scaffolds. A sample containing the highest Manuka honey content (30%) exhibited the best biocompatible properties. The obtained results reveal that the synergy of the bioactive agent, Manuka honey, with 2-hydroxyethyl methacrylate/gelatin as hybrid hydrogel scaffolds has potential for biomedical purposes. By tuning the Manuka honey content in HG hydrogel scaffolds advantageous properties of hybrid scaffolds can be achieved for biomedical applications.
Collapse
Affiliation(s)
- Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| | - Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk. V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dubravka P. Živanović
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Miloš M. Nikolić
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Totito TC, Laatikainen K, Bode-Aluko C, Pereao O, Petrik L. Fabrication and Characterization of Electrospun Waste Polyethylene Terephthalate Blended with Chitosan: A Potential Single-Use Material. Polymers (Basel) 2023; 15:polym15020442. [PMID: 36679322 PMCID: PMC9861542 DOI: 10.3390/polym15020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Textile single-use products are dominantly used for hygiene and personal care, many of which are non-biodegradable and are frequently discarded into sewerage systems, thus causing blockages. Thus, there is a need to move towards water-soluble textiles. This research study focuses on transforming or repurposing biomass material and synthetic reusable waste plastic materials to improve waste. Chitosan (CS) nanofibers could be used in single-use nonwoven fabric or biodegradable tissues, as the water-soluble properties of chitosan nanofibers make them the perfect material for single-use applications. Furthermore, CS was blended with polyethylene terephthalate (PET) polymer and PET-based waste plastic (CS-WPET) to slow the CS nanofibers' water degradability and strengthen the durability of the nanofiber which could be used as air filters. The CS-TFA and CS-TFA/DCM nanofiber diameters were 95.58 ± 39.28 nm or 907.94 ± 290.18 nm, respectively, as measured from the HRSEM images. The CS-PET and CS-WPET hybrid nanofibers had fiber diameters of 246.13 ± 96.36 or 58.99 ± 20.40 nm, respectively. The thermal durability of the nanofibers was tested by TGA, which showed that CS-TFA/DCM nanofibers had sufficient thermal stability up to 150 °C, making them suitable for filter or fabric use at moderate temperatures. The blended nanofibers (CS-PET and CS-WPET) were thermally stable up to 160 °C. In the aqueous medium stability test, CS-PET and CS-WPET hybrid nanofibers had a slower degradation rate and were easily dissolved, while the CS nanofibers were rapidly and completely dissolved in an aqueous medium. Blending waste PET with CS allows it to be recycled into a useful single-use, non-woven textile, with greater water solubility than unmodified PET nanofibers but more durability than CS nanofibers on their own.
Collapse
Affiliation(s)
- Thandiwe Crystal Totito
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- Correspondence:
| | - Katri Laatikainen
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland
| | - Chris Bode-Aluko
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Omoniyi Pereao
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Leslie Petrik
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
8
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Chen YL, Mu YS, He ZJ, Pu XM, Wang DQ, Zhou M, Yang LP. New bio-based polyester with excellent spinning performance: poly(tetrahydrofuran dimethanol- co-ethylene terephthalate). RSC Adv 2022; 12:29516-29524. [PMID: 36320739 PMCID: PMC9562050 DOI: 10.1039/d2ra04484f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023] Open
Abstract
With the excessive consumption of fossil energy, technologies that transform bio-based resources into materials have received more and more attention from researchers in recent decades. In this paper, a series of poly(ethylene 2,5-tetrahydrofuran dimethyl terephthalate; PEFTs) with different components were synthesized from 2,5-tetrahydrofuran dimethanol (THFDM), terephthalic acid (TPA), and ethylene glycol (EG). Their chemical structures and compositions were determined by FTIR, 1H NMR, and 13C NMR. With the increase in THFDM content, the crystallization, T m, and tensile strength of PEFTs gradually decrease because the introduced THFDM breaks the order of molecular chains, while the thermal stability and T g remain stable. PEFTs seem to present a significant shear thinning phenomenon, which was indicated by the rheological test. Electrospinning technology was used to explore the spinnability of PEFT; it was found that PEFTs have better spinning performance than PET. In addition, due to the good hydrophobicity and porosity of PEFT nanofiber films, they have potential application value in the manufacture of hydrophobic nanofiber and filter films.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yue-Song Mu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ze-Jian He
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xin-Ming Pu
- Wankai New Material Co., Ltd. Haining 314415 China
| | - Dong-Qi Wang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Li-Ping Yang
- Wankai New Material Co., Ltd. Haining 314415 China
| |
Collapse
|
10
|
Bahari N, Hashim N, Md Akim A, Maringgal B. Recent Advances in Honey-Based Nanoparticles for Wound Dressing: A Review. NANOMATERIALS 2022; 12:nano12152560. [PMID: 35893528 PMCID: PMC9332021 DOI: 10.3390/nano12152560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Wounds with impaired healing, including delayed acute injuries and chronic injuries, generally fail to progress through normal healing stages. A deeper understanding of the biochemical processes involved in chronic wound cures is necessary to correct the microenvironmental imbalances in the wound treatment designs of products. The therapeutic benefits of honey, particularly its antimicrobial activity, make it a viable option for wound treatment in a variety of situations. Integration with nanotechnology has opened up new possibilities not only for wound healing but also for other medicinal applications. In this review, recent advances in honey-based nanoparticles for wound healing are discussed. This also covers the mechanism of the action of nanoparticles in the wound healing process and perspectives on the challenges and future trends of using honey-based nanoparticles. The underlying mechanisms of wound healing using honey are believed to be attributed to hydrogen peroxide, high osmolality, acidity, non-peroxide components, and phenols. Therefore, incorporating honey into various wound dressings has become a major trend due to the increasing demand for combination dressings in the global wound dressing market because these dressings contain two or more types of chemical and physical properties to ensure optimal functionality. At the same time, their multiple features (low cost, biocompatibility, and swelling index) and diverse fabrication methods (electrospun fibres, hydrogels, etc.) make them a popular choice among researchers.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| |
Collapse
|
11
|
Kijeńska-Gawrońska E, Wiercińska K, Bil M. The Dependence of the Properties of Recycled PET Electrospun Mats on the Origin of the Material Used for Their Fabrication. Polymers (Basel) 2022; 14:2881. [PMID: 35890657 PMCID: PMC9322509 DOI: 10.3390/polym14142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Plastic materials are one of the significant components of construction materials omnipresent in all areas of the industry and everyday life. One of these plastics is polyethylene terephthalate (PET). Due to its processing properties, with a simultaneous low production cost, PET has been used in many industrial applications, including the production of various types of bottles. Moreover, the high consumption of PET bottles causes the accumulation of large amounts of their waste and necessitates finding an effective way to recycle them. Electrospinning is a well-known non-complicated method for the fabrication of nonwovens from polymers and composites, which can be utilized in many fields due to their outstanding properties. In addition, it might be a promising technique for the recycling of plastic materials. Therefore, in this study, the electrospinning approach for the recycling of two types of PET bottle wastes-bottles made of virgin PET and bottles made of recycled PET (PET bottles) has been utilized, and a comparison of the properties of the obtained materials have been performed. The fibers with diameters of 1.62 ± 0.22, 1.64 ± 0.18, and 1.89 ± 0.19 have been produced from solutions made of virgin PET granulate, PET bottles, and PET bottles made of recycled bottles, respectively. Obtained fibers underwent morphological observation using a scanning electron microscope. Physico-chemical properties using FTIR, gel chromatography, and differential scanning calorimetry have been evaluated, and mechanical properties of obtained mats have been investigated. Cytotoxicity tests using the L929 mouse fibroblast cell line revealed no cytotoxicity for all tested materials.
Collapse
Affiliation(s)
- Ewa Kijeńska-Gawrońska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland;
| | - Katarzyna Wiercińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland;
| | - Monika Bil
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| |
Collapse
|
12
|
Arida IA, Ali IH, Nasr M, El-Sherbiny IM. Electrospun polymer-based nanofiber scaffolds for skin regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Pakolpakçıl A, Draczynski Z. Green Approach to Develop Bee Pollen-Loaded Alginate Based Nanofibrous Mat. MATERIALS 2021; 14:ma14112775. [PMID: 34073748 PMCID: PMC8197206 DOI: 10.3390/ma14112775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Green electrospun materials are gaining popularity in the quest for a more sustainable environment for human life. Bee pollen (BP) is a valuable apitherapeutic product and has many beneficial features such as antioxidant and antibacterial properties. Alginate is a natural and low-cost polymer. Both natural materials show good compatibility with human tissues for biomedical applications and have no toxic effect on the environment. In this study, bee pollen-loaded sodium alginate and polyvinyl alcohol (SA/PVA) nanofibrous mats were fabricated by the electrospinning technique. The green electrospun nanofibrous mats were analyzed by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimeter (DSC). According to the findings of the study, the toxin-free electrospinning method is suitable for producing green nanomaterial. Because of the useful properties of the bee pollen and the favorable biocompatibility of the alginate fibers, the bee pollen-loaded SA/PVA electrospun mats have the potential for use in a variety of biomedical applications.
Collapse
|
14
|
Tiwari R, Tiwari G, Lahiri A, R V, Rai AK. Localized Delivery of Drugs through Medical Textiles for Treatment of Burns: A Perspective Approach. Adv Pharm Bull 2021; 11:248-260. [PMID: 33880346 PMCID: PMC8046402 DOI: 10.34172/apb.2021.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
The topical delivery offers numerous benefits, such as the ability to deliver drugs specifically on site selectively, prevents fluctuations in the levels of the drug, improved compliance, and improved self-medication capacity. Skin is the main route of the administration of the drug delivery system (DDS) and burns mainly cause skin damage. A burn is a kind of damage caused to skin and tissues by fire, ice, electrical energy, pollutants, friction, and radiation. There are three different types of burns, including superficial epidermis burns, partial-thickness dermis that stretch to the papillary and reticular dermis, and full-thickness burns that cover the dermis whole. The objective of the present review article is to focus on fabrication techniques of medical textiles, different types of polymers used for designing medicated textiles, skin burn conditions, and application of medicated textiles for treatment of burn along with other applications. Cream, ointment, and gel are the dosage forms used in burns. Intravenous fluids, wound care, assorted antibiotics, surgical and alternative medicines, burned creams and salami, dressings can be used to treat wounds. Nanofibers are nanometer-specific fibers that encapsulate drugs inside them and cure wounds. Nanofibers have all the properties that speed up wound healing. The properties are mechanical integrity, proper timing of wound addiction, temperature homeostasis facilitation and gas exchange, absorption of exudates. The nanofibers have been used in burn care and have been highly efficient and non-toxic.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Gaurav Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Akanksha Lahiri
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Vadivelan R
- Department of Pharmacology, JSS College of Pharmacy, Ooty-643001, India
| | - Awani K Rai
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| |
Collapse
|
15
|
Ghalei S, Li J, Douglass M, Garren M, Handa H. Synergistic Approach to Develop Antibacterial Electrospun Scaffolds Using Honey and S-Nitroso-N-acetyl Penicillamine. ACS Biomater Sci Eng 2021; 7:517-526. [DOI: 10.1021/acsbiomaterials.0c01411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jianwen Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
16
|
In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03486-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:503-514. [DOI: 10.1016/j.msec.2018.12.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022]
|
18
|
Mansoori-Moghadam Z, Totonchi M, Hesaraki M, Aghdami N, Baharvand H, Moghadasali R. Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Exp Cell Res 2019; 379:225-234. [PMID: 30981668 DOI: 10.1016/j.yexcr.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
This study aims to prepare intermediate mesoderm-like cells from mouse embryonic fibroblasts (MEFs). In the first step, intermediate mesoderm-like cells (IMLCs) and renal epithelial-like cells (RELCs) were extracted from mouse embryonic stem cells (mESCs) in a specified media that contained two small molecules, CHIR99021 and TTNPB, along with growth factors, FGF9and BMP7. Then, MEFs were directly converted into IM by genes for the pluripotency factors, which encode the transcription factors; Oct4, Sox2, Klf4, and c-Myc (OSKM). These unstable intermediate cells were quickly encouraged to form IM with the assistance of CHIR99021 and TTNPB. The results showed that exogenous expression of OSKM factors for four days was adequate to generate partially reprogrammed cells (SSEA1+/Nanog-). Real-time PCR and immunocytochemistry analysis confirmed the presence of the MEF-derived IMs. This study introduced a method for mESCs differentiation to RELCs followed by MEF conversion in an attempt to generate IM by circumventing pluripotency.
Collapse
Affiliation(s)
- Zohreh Mansoori-Moghadam
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Ramalingam R, Dhand C, Leung CM, Ezhilarasu H, Prasannan P, Ong ST, Subramanian S, Kamruddin M, Lakshminarayanan R, Ramakrishna S, Verma NK, Arunachalam KD. Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E462. [PMID: 30897714 PMCID: PMC6474082 DOI: 10.3390/nano9030462] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
Abstract
Electrospun fibers have emerged as promising materials in the field of biomedicine, due to their superior physical and cell supportive properties. In particular, electrospun mats are being developed for advanced wound dressing applications. Such applications require the firers to possess excellent antimicrobial properties in order to inhibit potential microbial colonization from resident and non-resident bacteria. In this study, we have developed Poly-ε-Caprolactone /gelatin hybrid composite mats loaded with natural herbal extract (Gymnema sylvestre) to prevent bacterial colonization. As-spun scaffolds exhibited good wettability and desirable mechanical properties retaining their fibrous structure after immersing them in phosphate buffered saline (pH 7.2) for up to 30 days. The initial burst release of Gymnema sylvestre prevented the colonization of bacteria as confirmed by the radial disc diffusion assay. Furthermore, the electrospun mats promoted cellular attachment, spreading and proliferation of human primary dermal fibroblasts and cultured keratinocytes, which are crucial parenchymal cell-types involved in the skin recovery process. Overall these results demonstrated the utility of Gymnema sylvestre impregnated electrospun PCL/Gelatin nanofibrous mats as an effective antimicrobial wound dressing.
Collapse
Affiliation(s)
- Raghavendra Ramalingam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, Singapore 117581, Singapore.
| | - Hariharan Ezhilarasu
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sundarapandian Subramanian
- Department of Anatomy, SRM Medical College Hospital and Research Centre, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| | - Mohammed Kamruddin
- Materials Physics Division, Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102, India.
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| |
Collapse
|
20
|
Qu X, Liu H, Zhang C, Lei Y, Lei M, Xu M, Jin D, Li P, Yin M, Payne GF, Liu C. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomater 2018; 73:190-203. [PMID: 29505893 DOI: 10.1016/j.actbio.2018.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. STATEMENT OF SIGNIFICANCE We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing.
Collapse
|
21
|
Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:964-974. [DOI: 10.1080/21691401.2018.1439842] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hadi Samadian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Sahrapeyma
- Department of Biomaterial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghorbani
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Hixon KR, Lu T, Carletta MN, McBride-Gagyi SH, Janowiak BE, Sell SA. A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. J Biomed Mater Res B Appl Biomater 2017; 106:1918-1933. [PMID: 28960886 DOI: 10.1002/jbm.b.34002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/17/2017] [Accepted: 06/15/2017] [Indexed: 12/18/2022]
Abstract
Previous studies have identified honey as an agent in bacterial inhibition and a mediator in lowering the pH at the wound site. Manuka honey (MH), indigenous to New Zealand, contains a Unique Manuka Factor that provides an additional antibacterial agent. While there are many potential benefits to incorporating MH into wounds, there is currently no ideal way to deliver the material to the site of injury. Cryogels are a type of scaffold that possess high porosity, mechanical stability, and a sponge-like consistency. This study uniquely incorporates varying amounts of MH into cryogel scaffolds, utilizing its properties in a sustained release fashion to assist in the overall healing process, while using the cryogel structure as a tissue template. All cryogels were evaluated to determine the effects of MH on porosity, swelling potential, mechanical durability, and cell compatibility. The release of MH was also quantified to evaluate bacterial clearance potential, and the scaffolds were mineralized to replicate native bone. It was determined that a 5% MH silk fibroin cryogel has the potential to inhibit bacterial growth while still maintaining adequate porosity, mechanical properties, and cell infiltration. Such a scaffold would have use in a number of applications, including bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1918-1933, 2018.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Tracy Lu
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Marissa N Carletta
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | | | | | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
23
|
Rzayev ZMO, Bunyatova U, Şimșek M. Multifunctional colloidal nanofiber composites including dextran and folic acid as electro-active platforms. Carbohydr Polym 2017; 166:83-92. [PMID: 28385251 DOI: 10.1016/j.carbpol.2017.02.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/27/2022]
Abstract
This work presents the fabrication and characterization of novel colloidal multifunctional polymer nanofiber composites (NFCs) from water dispersion blends of intercalated silicate layered nanocomposites of poly (2-vinyl-N-pyrrolidone)/octadecyl amine-montmorillonite (ODA-MMT) and dextran/ODA-MMT as matrix and partner polymer intercalated nanocomposites in the presence of NaOH and folic acid (FA) as doping agents by green reactive electrospinning. Chemical and physical structures, surface morphology and electrical properties were investigated. Effects of matrix/partner polymer ratios, doping agents, absorption time of NaOH, and temperature on electrical parameters of NFCs were evaluated. The presence of FA and increasing dextran fraction in NFCs resulted in reducing fiber diameter and improving diameter distribution. High complexing behaviors of matrix/partner polymer chains, organoclay, FA, and NaOH significantly improved conductivity parameters, especially 5-min of absorption time (≈10-2-10-3Sm-1). The conductivity of the samples decreased with increasing temperature. NFCs fabricated for the first time are promising candidates for various biomedical, electrochemical and electronic applications as electro-active platforms.
Collapse
Affiliation(s)
- Zakir M O Rzayev
- Institute of Science and Engineering, Division of Nanotechnology and Nanomedicine, Hacetttepe University, Beytepe, 06800 Ankara, Turkey.
| | - Ulviye Bunyatova
- Department of Biomedical Engineering, Faculty of Engineering, Başkent University, Bağlıca, 06810 Ankara, Turkey
| | - Murat Şimșek
- Department of Biomedical Engineering, Faculty of Engineering, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
24
|
Giusto G, Vercelli C, Comino F, Caramello V, Tursi M, Gandini M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. Altern Ther Health Med 2017; 17:266. [PMID: 28511700 PMCID: PMC5433168 DOI: 10.1186/s12906-017-1769-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Honey, alone or in combination, has been used for wound healing since ancient times and has reemerged as a topic of interest in the last decade. Pectin has recently been investigated for its use in various biomedical applications such as drug delivery, skin protection, and scaffolding for cells. The aim of the present study was to develop and evaluate a pectin-honey hydrogel (PHH) as a wound healing membrane and to compare this dressing to liquid honey. METHODS Thirty-six adult male Sprague-Dawley rats were anesthetized and a 2 × 2 cm excisional wound was created on the dorsum. Animals were randomly assigned to four groups (PHH, LH, Pec, and C): in the PHH group, the pectin-honey hydrogel was applied under a bandage on the wound; in the LH group, liquid Manuka honey was applied; in the Pec group, pectin hydrogel was applied (Pec); and in the C group, only bandage was applied to the wound. Images of the wound were taken at defined time points, and the wound area reduction rate was calculated and compared between groups. RESULTS The wound area reduction rate was faster in the PHH, LH, and Pec groups compared to the control group and was significantly faster in the PHH group. Surprisingly, the Pec group exhibited faster wound healing than the LH group, but this effect was not statistically significant. CONCLUSION This is the first study using pectin in combination with honey to produce biomedical hydrogels for wound treatment. The results indicate that the use of PHH is effective for promoting and accelerating wound healing.
Collapse
|
25
|
Hixon KR, Lu T, McBride-Gagyi SH, Janowiak BE, Sell SA. A Comparison of Tissue Engineering Scaffolds Incorporated with Manuka Honey of Varying UMF. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4843065. [PMID: 28326322 PMCID: PMC5343224 DOI: 10.1155/2017/4843065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/17/2022]
Abstract
Purpose. Manuka honey (MH) is an antibacterial agent specific to the islands of New Zealand containing both hydrogen peroxide and a Unique Manuka Factor (UMF). Although the antibacterial properties of MH have been studied, the effect of varying UMF of MH incorporated into tissue engineered scaffolds have not. Therefore, this study was designed to compare silk fibroin cryogels and electrospun scaffolds incorporated with a 5% MH concentration of various UMF. Methods. Characteristics such as porosity, bacterial clearance and adhesion, and cytotoxicity were compared. Results. Pore diameters for all cryogels were between 51 and 60 µm, while electrospun scaffolds were 10 µm. Cryogels of varying UMF displayed clearance of approximately 0.16 cm for E. coli and S. aureus. In comparison, the electrospun scaffolds clearance ranged between 0.5 and 1 cm. A glucose release of 0.5 mg/mL was observed for the first 24 hours by all scaffolds, regardless of UMF. With respect to cytotoxicity, neither scaffold caused the cell number to drop below 20,000. Conclusions. Overall, when comparing the effects of the various UMF within the two scaffolds, no significant differences were observed. This suggests that the fabricated scaffolds in this study displayed similar bacterial effects regardless of the UMF value.
Collapse
Affiliation(s)
- Katherine R. Hixon
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO, USA
| | - Tracy Lu
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO, USA
| | | | | | - Scott A. Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
26
|
Insoluble poly(ethylene oxide) nanofibrous coating materials: effects of crosslinking conditions on the matrix stability. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1127-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int J Nanomedicine 2016; 11:4339-55. [PMID: 27621626 PMCID: PMC5015880 DOI: 10.2147/ijn.s112265] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4–50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; IJNUTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Rathanasamy Rajasekar
- Department of Mechanical Engineering, School of Building and Mechanical Sciences, Kongu Engineering College, Tamil Nadu, India
| |
Collapse
|
28
|
Das U, Behera SS, Singh S, Rizvi SI, Singh AK. Progress in the Development and Applicability of Potential Medicinal Plant Extract-Conjugated Polymeric Constructs for Wound Healing and Tissue Regeneration. Phytother Res 2016; 30:1895-1904. [DOI: 10.1002/ptr.5700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Urmimala Das
- Department of Biotechnology & Medical Engineering; National Institute of Technology; Rourkela Odisha 769008 India
| | | | - Sandeep Singh
- Department of Biochemistry; University of Allahabad; Allahabad Uttar Pradesh 211002 India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry; University of Allahabad; Allahabad Uttar Pradesh 211002 India
| | - Abhishek Kumar Singh
- Department of Biochemistry; University of Allahabad; Allahabad Uttar Pradesh 211002 India
| |
Collapse
|
29
|
Lahooti B, Khorram M, Karimi G, Mohammadi A, Emami A. Modeling and optimization of antibacterial activity of the chitosan-based hydrogel films using central composite design. J Biomed Mater Res A 2016; 104:2544-53. [DOI: 10.1002/jbm.a.35799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Behnaz Lahooti
- School of Chemical and Petroleum Engineering, Shiraz University; Shiraz Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University; Shiraz Iran
| | - Gholamreza Karimi
- School of Chemical and Petroleum Engineering, Shiraz University; Shiraz Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences; Shiraz Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Department of Microbiology, Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
30
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
31
|
Muzzarelli RAA, El Mehtedi M, Mattioli-Belmonte M. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar Drugs 2014; 12:5468-502. [PMID: 25415349 PMCID: PMC4245541 DOI: 10.3390/md12115468] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
The present review article is intended to direct attention to the technological advances made in the 2010-2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas.
Collapse
Affiliation(s)
- Riccardo A A Muzzarelli
- Faculty of Medicine, Department of Clinical & Molecular Sciences, Polytechnic University of Marche, IT-60100 Ancona, Italy.
| | - Mohamad El Mehtedi
- Faculty of Engineering, Department of Industrial Engineering & Mathematical Sciences, Polytechnic University of Marche, IT-60100 Ancona, Italy.
| | - Monica Mattioli-Belmonte
- Faculty of Medicine, Department of Clinical & Molecular Sciences, Polytechnic University of Marche, IT-60100 Ancona, Italy.
| |
Collapse
|