1
|
Kondakova OA, Evtushenko EA, Baranov OA, Nikitin NA, Karpova OV. Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications. BIOCHEMISTRY (MOSCOW) 2022; 87:548-558. [PMID: 35790410 PMCID: PMC9201271 DOI: 10.1134/s0006297922060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Structurally modified virus particles can be obtained from the rod-shaped or filamentous virions of plant viruses and bacteriophages by thermal or chemical treatment. They have recently attracted attention of the researchers as promising biogenic platforms for the development of new biotechnologies. This review presents data on preparation, structure, and properties of the structurally modified virus particles. In addition, their biosafety for animals is considered, as well as the areas of application of such particles in biomedicine. A separate section is devoted to one of the most relevant and promising areas for the use of structurally modified plant viruses – design of vaccine candidates based on them.
Collapse
Affiliation(s)
- Olga A Kondakova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Oleg A Baranov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with various shapes as potential adjuvants. Sci Rep 2020; 10:10365. [PMID: 32587281 PMCID: PMC7316779 DOI: 10.1038/s41598-020-67023-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Plant viruses are biologically safe for mammals and can be successfully used as a carrier/platform to present foreign epitopes in the course of creating novel putative vaccines. However, there is mounting evidence that plant viruses, their virus-like and structurally modified particles may also have an immunopotentiating effect on antigens not bound with their surface covalently. Here, we present data on the adjuvant properties of plant viruses with various shapes (Tobacco mosaic virus, TMV; Potato virus X, PVX; Cauliflower mosaic virus, CaMV; Bean mild mosaic virus, BMMV) and structurally modified TMV spherical particles (SPs). We have analysed the effectiveness of immune response to individual model antigens (ovalbumin, OVA/hen egg lysozyme, HEL) and to OVA/HEL in compositions with plant viruses/SPs, and have shown that CaMV, TMV and SPs can effectively induce total IgG titers to model antigen. Some intriguing data were obtained when analysing the immune response to the plant viruses/SPs themselves. Strong immunity was induced to CaMV, BMMV and PVX, whereas TMV and SPs stimulated considerably lower self-IgG titers. Our results provide new insights into the immunopotentiating properties of plant viruses and can be useful in devising adjuvants based on plant viruses.
Collapse
Affiliation(s)
- Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation.
| | - Ekaterina M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Joseph G Atabekov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| |
Collapse
|
3
|
Nikitin NA, Zenin VA, Trifonova EA, Ryabchevskaya EM, Kondakova OA, Fedorov AN, Atabekov JG, Karpova OV. Assessment of structurally modified plant virus as a novel adjuvant in toxicity studies. Regul Toxicol Pharmacol 2018; 97:127-133. [PMID: 29932979 DOI: 10.1016/j.yrtph.2018.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 06/16/2018] [Indexed: 01/19/2023]
Abstract
Spherical particles (SPs) generated by thermally denatured tobacco mosaic virus (TMV) coat protein can act as an adjuvant, as they are able to enhance the magnitude and longevity of immune responses to different antigens. Here, the toxicity of TMV SPs was assessed prior to it being offered as a universal safe adjuvant for the development of vaccine candidates. The evaluation included nonclinical studies of a local tolerance following the single administration of TMV SPs, and of the local and systemic effects following repeated administrations of TMV SPs. These were conducted in mice, rats and rabbits. General health status, haematology and blood chemistry parameters were monitored on a regular basis. Also, reproductive and development toxicity were studied. No significant signs of toxicity were detected following single or repeated administrations of the adjuvant (TMV SPs). The absence of toxicological effects following the injection of TMV SPs is promising for the further development of recombinant vaccine candidates with TMV SPs as an adjuvant.
Collapse
Affiliation(s)
- N A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation.
| | - V A Zenin
- Group of Molecular Biotechnology, Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 33-2 Leninsky pr., Moscow, 119071, Russian Federation
| | - E A Trifonova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - E M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - O A Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - A N Fedorov
- Group of Molecular Biotechnology, Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 33-2 Leninsky pr., Moscow, 119071, Russian Federation
| | - J G Atabekov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - O V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| |
Collapse
|
4
|
Study of rubella candidate vaccine based on a structurally modified plant virus. Antiviral Res 2017; 144:27-33. [PMID: 28511994 DOI: 10.1016/j.antiviral.2017.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella.
Collapse
|
5
|
Nikitin N, Ksenofontov A, Trifonova E, Arkhipenko M, Petrova E, Kondakova O, Kirpichnikov M, Atabekov J, Dobrov E, Karpova O. Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions. FEBS Lett 2016; 590:1543-51. [PMID: 27098711 DOI: 10.1002/1873-3468.12184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/19/2016] [Accepted: 04/18/2016] [Indexed: 11/11/2022]
Abstract
We developed a method for the fast transformation of virions of tobacco mosaic virus (TMV) in so-called spherical particles (SPs) of different sizes. These SPs turned out to be highly useful for the preparation of different kinds of important biotechnological products. In this communication, we report that a representative of the flexuous helical virus group-potato virus X (PVX), produces SPs as well, but these SPs differ from TMV SPs in several important aspects. PVX SPs may be useful biotechnological devices.
Collapse
Affiliation(s)
| | - Alexander Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | | | - Olga Kondakova
- Biology Faculty, Lomonosov Moscow State University, Russia
| | | | | | - Evgeny Dobrov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Olga Karpova
- Biology Faculty, Lomonosov Moscow State University, Russia
| |
Collapse
|
6
|
Petrova EK, Dmitrieva AA, Trifonova EA, Nikitin NA, Karpova OV. The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines. Vaccine 2016; 34:1006-11. [PMID: 26776468 DOI: 10.1016/j.vaccine.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Abstract
Rubella is a highly contagious viral disease which is mostly threatens to women of reproductive age. Existent live attenuated vaccines are effective enough, but have some drawbacks and are unusable for a certain group of people, including pregnant women and people with AIDS and other immunodeficiency. Thereby the development of alternative non-replicating, recombinant vaccines undoubtedly is needed. This review discusses the protein E1 and E2 role in formation of immune response and perspectives in development of new generation recombinant vaccines using them.
Collapse
Affiliation(s)
- Ekaterina K Petrova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia.
| | - Anastasia A Dmitrieva
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Ekaterina A Trifonova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
7
|
Atabekov JG, Nikitin NA, Karpova OV. New type platforms for in vitro vaccine assembly. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392515040045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|